

The IAS-Region is Characterized by Prominent Intraseasonal Variability

- Particularly prominent
 E. Pacific ISV
- Significant 40-50 day spectral peaks during boreal summer
- Higher signal to noise ratio than Eastern Hemisphere.

Maloney et al. (2008)

ISO Composites: Winds, Precip, LHFLX

ISV in Tropical Cyclone Activity

Maloney and Hartmann (2000)

E. Pac Genesis vs. MJO Phase

Crosbie and Serra (2014)

 Slade and Maloney (2013) developed a statistical prediction model using knowledge of the MJO that exhibits skill in predicting east Pacific and Atlantic cyclogenesis 3 weeks in advance

ISV in Easterly Wave Activity

TD-filtered OLR variance (shading) and 700 hPa EKE

 Easterly waves are much more active during the ISO westerly phase

Crosbie and Serra (2014)

CAM-R Precipitation Spectrum

Sensitivity to Wind-Induced Flux Feedbacks

 Some modeling and observational evidence indicates the importance of wind-induced flux feedbacks to the MJO

5° × 5° averaging box centered at 14°N, 102°W

Maloney and Esbensen (2005)

Can an East Pacific 40-50 Day Mode Exist Independently of the MJO?: Conflicting Evidence

CMIP5 Performance in Simulating Leading 40-50 Day Mode

Models with Better Variability have Better Mean State Winds

Jiang et al. (2013)

East Pacific ISO Predictability and Prediction Skill

- Lower prediction skill and predictability than for the MJO
- Prediction skill higher when MJO active

Keys to Successful East Pacific ISO Simulation

- Amplitude versus RH Difference Between Top 5% and Bottom 10% of Precip Events
- Amplitude versus vertical component of gross moist stability (GMS)
- GMS: partial measure of efficiency of convective moisture discharge from column

Outstanding Science Questions

- To what degree is east Pacific ISV independent of the MJO?
- What are the local destabilization processes for east Pacific ISV (surface flux and radiative feedbacks, convective heating profiles)?
- How can simulations and forecasts of east Pacific ISV be improved without degrading other aspects of the simulation?
- How does easterly wave variability feedback to influence east Pacific ISV?
- Is easterly wave formation and subsequent tropical cyclogenesis predictable based on knowledge of the state of the MJO and its regional manifestations?
- Proposed OTREC (Organization of Tropical East Pacific Convection)
 east Pacific field program might help answer some of these
 questions.

