Subseasonal-to-seasonal extreme rainfall scenarios for the Caribbean Basin^{*}

Á.G. Muñoz, L. Goddard, A. Robertson agmunoz@iri.columbia.edu

Department of Earth and Environmental Sciences (DEES). Columbia University and International Research Institute

for Climate and Society EARTH INSTITUTE | COLUMBIA UNIVERSITY

^{*}Funded by the International Research Application Program (IRAP), sponsored by NOAA and USAID

General Research Questions

+ Can we represent rainfall regimes in the Caribbean through particular daily atmospheric circulation patterns (or "weather types", WTs)?

+ Are WTs more frequent during/after particular sea-surface temperature (SST) configurations? (predictability)

+ How well can dynamical models predict the observed characteristics of WTs? (predictability) [see (N. Vigaud and A. Roberton)'s poster on Friday]

+ Can we associate sequences of WTs with particular extreme rainfall distributions (temporal and spatial)? Can we build forecast models for that?

+ What is the predictive skill of such models?

Earth Institute | Columbia University

120°W

80°W

40°W

0

percentile

 80^{th}

SSTa composite for years with W7

Klee and his exploration of color sequences

Paul Klee (1879-1940)

Klee diagram

Subseasonal-to-seasonal (s2s) states

s2s extreme rainfall scenarios

Frequency of days exceeding the 95^{th} percentile (per grid box)

A Typical Forecast

Cross-validation (3-yr window)

TABLE 3. Cross-validated forecasted probabilities (in %) for each scenario, and observed category. Results are shown for the best-guess multinomial logistic model. Probabilities have been rounded to the closest integer.

Predictor: frequency of WTs Predictand: s2s states

Year	I	п	III	IV	v	Observed	Hit(1)/Miss(0)
1981	36	64	0	0	1	I	0
1982	68	17	1	7	7	I	1
1983	0	0	1	0	99	v	1
1984	43	48	3	0	7	I	0
1985	0	0	0	100	0	IV	1
1986	13	2	24	0	61	I	0
1987	95	4	0	0	1	I	1
1988	82	10	2	6	0	I	1
1989	49	49	1	0	1	Π	1
1990	61	38	0	0	0	I	1
1991	27	0	21	0	52	ш	0
1992	8	0	0	0	92	v	1
1993	65	14	1	0	20	п	0
1994	60	17	12	0	11	III	0
1995	72	5	8	0	15	Ι	1
1996	88	5	1	0	5	III	0
1997	54	44	1	0	1	п	0
1998	0	0	41	0	59	v	1
1999	1	0	42	0	20	III	0
2000	81	12	3	0	4	Π	0
2001	0	0	0	100	0	IV	1
2002	10	2	30	0	57	III	0
2003	82	2	3	13	0	IV	0
2004	93	1	3	0	3	I	1
2005	81	6	4	0	9	v	0
2006	1	0	43	0	56	III	0
2007	0	0	0	100	0	IV	1
2008	5	0	58	0	37	v	0
2009	6	8	0	86	0	IV	1

 $\begin{array}{l} \mbox{Skill metrics:} \\ \mbox{Kendall's } \tau = 0.371^* \\ \mbox{Hit score} = 48.27\% \\ \mbox{HSS} = 0.353 \end{array}$

 * denotes statistically significant value at p<0.05

Muñoz, Goddard & Robertson, (in prep.)

Cross-validation (3-yr window)

TABLE 3. Cross-validated forecasted probabilities (in %) for each scenario, and observed category. Results are shown for the best-guess multinomial logistic model. Probabilities have been rounded to the closest integer.

Predictor: frequency of WTs Predictand: s2s states

Year	I	Π	III	IV	v	Observed	Hit(1)/Miss(0)
1981	36	64	0	0	1	I	0
1982	68	17	1	7	7	I	1
1983	0	0	1	0	99	v	1
1984	43	48	3	0	7	I	0
1985	0	0	0	100	0	IV	1
1986	13	2	24	0	61	I	0
1987	95	4	0	0	1	I	1
1988	82	10	2	6	0	I	1
1989	49	49	1	0	1	Π	1
1990	61	38	0	0	0	I	1
1991	27	0	21	0	52	III	0
1992	8	0	0	0	92	v	1
1993	65	14	1	0	20	Π	0
1994	60	17	12	0	11	III	0
1005		-	~	•		-	

 $\begin{array}{l} {\rm Skill\ metrics:}\\ {\rm Kendall's\ }\tau=0.371^*\\ {\rm Hit\ score\ }=48.27\%\\ {\rm HSS\ }=0.353 \end{array}$

 * denotes statistically significant value at p<0.05

TABLE 4. Contingecy table (in % of the total number of years) for the hindcasts reported in Table 3.

Forecas	ted / Observed	I	п	ш	IV	v
	I	20.69	10.34	6.90	3.45	3.45
	п	6.90	3.45	0	0	0
	III	0	0	0	0	3.45
	IV	0	0	0	13.80	0
	V	3.45	0	13.80	0	10.34

Muñoz, Goddard & Robertson, (in prep.)

Summary

+ Can we represent rainfall regimes in the Caribbean through particular daily atmospheric circulation patterns (or "weather types", WTs)? Yes. Through particular WTs and sequences of WTs (better).

+ Are WTs more frequent during/after particular sea-surface temperature (SST) configurations? (predictability)

Yes. And a combination of SST and MJO

+ How well can dynamical models predict the observed characteristics of WTs?
(predictability) [see N. Vigaud poster on Friday]
Well enough (some bias). Better than rainfall!

+ Can we associate sequences of WTs with particular extreme rainfall distributions (temporal and spatial)? Can we build forecast models for that? Yes. Categorical models (multinomial logistic models).

+ What is the predictive skill of such models? Not bad. HS: $\sim 50\%$ (climatological: 20%), HSS: 0.35, $\tau = 0.37$ (for rainfall: $\sim 0.1-0.2!$) Model is better for state IV, good with I (but sometimes confused), bad for III.

Extra Slides

Multinomial Logistic Models

$$\pi_i = |\langle Y_i | X \rangle|^2 = P(Y_i | X)$$

$$\log \frac{\pi_i}{\tilde{\pi}} = \alpha_i + \beta_{ij} X_j$$

$$\pi_i = \frac{\exp\left(\alpha_i + \beta_{ij}X_j\right)}{1 + \left[\exp\left(\alpha_k + \beta_{kj}X_j\right)\right]_k}$$
$$\tilde{\pi} = \frac{1}{1 + \left[\exp\left(\alpha_k + \beta_{kj}X_j\right)\right]_k}$$

What about mean rainfall?

