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Motivation Conclusions

Detrended salt marsh proxies along the Eastern North American coastline reveal regional variability that % The CESM Last Millennium Ensemble does not exhibit multi-decadal to multi-centennial,
has been interpreted to reflect changes in ocean dynamics (e.g. Kemp et al. 2013). Here, we analyze the - . . . . . .

CESM Last Millennium Ensemble to determine whether comparable departures in coastal sea level are 15-30 cm, swings in dynamlc sea level (DSL) inferred from salt-marsh proxies.

evident in simulations at any time between 850-2100, and the possible role of variations in Atlantic

% However, strong, in-phase, anticorrelations of DSL with AMOC strength suggest that much
Meridional Overturning Circulation (AMOC) strength.

of the variability could be accounted for with 5+ Sv variations in AMOC.

e . 7 Other explanations for model-proxy discrepancies include:
T g « Static-equilibrium effects (unlikely to account for magnitude of changes across sites)
N 3 * Local processes/error (also unlikely across all sites)
2 * Unresolved dynamic changes that are unrelated to AMOC strength
|- a0°N

* Other suggestions are appreciated!
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i How large would AMOC changes have to be?
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Dynamic sea level anomaly (in cm), relative to the 850-1850 period, at coastal grid points for various CESM-LME simulations. Locations of e : -4
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+ CESM exhibits three regions of coherent DSL variability along the Eastern North American coast, &) 0 -6
in partial agreement with recent instrumental analyses (e.g. McCarthy et al. 2015). g B -1
. . . . P " . 51 AMOC=0.34ADSL -1.5 | AMOGC=029ADSL AMOG=-0.56ADSL.
* These regions are consistent across control, last millennium, historical, and 21% century simulations. 1 Z 1 z -8
* Florida and North Carolina salt marsh sites are near the boundaries of dynamic regimes. 2>5 =052 2-5 =086 10 r*=0.99 v
* Some coastal points are subject to local (physical/numerical?) effects. ) 0 5 "5 0 5 0 5 10 15 20
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Regression of DSL anomalies north of 35°N and maximum AMOC streamfunction for a single ensemble member (grey) and the ensemble mean (black).

+ Dramatic changes in sustained and/or stochastic NAO forcing, absent in these simulati might lead to und i d
Last Millennium AMOC and DSL variability (Trouet 2009; Otto-Bliesner et al. 2015)

+ Last Millennium simulations indicate that post-1600 DSL rise in NC and NJ, and pre-1100 DSL rise and fall in NJ could
be explained by ~5 Sv changes in AMOC strength (on multi-century timescales)

+ However, this assumes an AMOC/DSL relati ip is i 'y: RCP 8.5 si ions show a lower
Furthermore, this relationship is not consistent across climate models (not shown here).

North of 35°N

eg') : o CESM-LME analysis
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+ Community Earth System Model Last
65 Millennium Ensemble (CESM-LME)
s+ 850 control simulation, and 4 members
of the LME (simulations 2, 3, 8, and 9).
Forced simulations employ a

0 reconstruction of climate forcing

I pre-1850, then the 1850-2005 forcing as
LB s specified in the CMIPS historical

5 experiments, then 2006-2100 RCP 8.5
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Top: DSL anomaly (in cm), relative to the 850-1850 period, averaged over three coastal regions, with an 8 cm offset between regions. Bottom: Maximum
AMOC streamfunction anomaly (Sv) relative to the 850-1850 mean. Black lines show 850 control simulation. Thin lines are 4 individual ensemble members.

Thick lines indicate the ensemble mean. Note different scale on pre- and post- 1850 plots. L _‘; forcing.
. R . -0« “SSH” and “MOC” variables smoothed
*  When averaged over three regions, large changes in DSL (>.3 cm), alongshore DSL gradient, and o with a 15-year filter
AMOC strength (>1.5 Sv) are evident only under RCP forcing

L L L L L L N * 44 coastal grid points between 29°N and
+  Forced variability is almost completely indistiguishable before 2000 except for a multi-decadal oW OO0 TLON TROW TLOW TEO T0.0W 68,070 45°N tracted
. . . . Mean dynamic topography (in cm) relative to the grid point closest to the NJ salt marsh site in the are extractes
excursion associated with a strengthening AMOC around 1275 CE. CESM-LEM 850 control simulation.
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