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.= IBRD records: Two IBRD records from the Scotia Sea (MD07-3133 and
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and project future climate change.

Fig 1: A) LOVECLIM-based subsurface (400-700m) Southern 1 -
Ocean (<50°S) temperature forcing of AIS simulation, B)
Cumulative AIS meltwater forcing from PISM simulation (cm) C)
AIS meltwater forcing from PISM simulation (Sv), D) IBRD stack
from the Scotia Sea, E) AABW strength (Sv; given as minimum 2
overturning streamfunction in the Southern Ocean), F) AMOC
strength (Sv; given as maximum overturning streamfunction in
Atlantic <500m), and G) temperature anomalies (K) in FWF for
global surface air, Southern Ocean surface and Southern Ocean 3
subsurface (400-700m).
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Periods of strong and weak AABW: Changes in Antarctic Bottom
| Water Formation (AABW) are simulated by UVic. Periods of strong and
weak AABW are defined as all times that AABW was outside the 1o band

Fig 3: Southern Ocean temperature anomalies (K; shading) and
meridional streamfunction anomalies (Sv; contours) for periods
of weak AABW formation. 5
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- with a 10-year running mean.




