US CLIVAR AMOC workshop, 23-25 May, 2016, Boulder, CO, USA

Bjerknes Centre

Ocean biogeochemical responses to AMOC variability

ln a Changlng Cllmate for Climate Research
Jerry Tjiputra, UniResearch Climate, Bjerknes Centre for Climate Research, Bergen, Norway

uni Research

I. Rationale: AMOC impact on simulated equilibrium interior oxygen IV. Time of Detectable Change (ToDC)

One of the key questions related to future climate prediction is the stability of the ocean overturning Here, we explore the detectability of biogeochemical tracer changes in response to the projected
(THC) and how it responses to the ongoing anthropogenic climate change. The functioning of ocean climate change. We define Time of Detectable Change (ToDC) as the year where the seasonal cycle
biogeochemistry and distributions of biogeochemical tracers are tightly coupled with the THC. Doney exceeds twice of the natural standard deviation for five continuous years. The ToDC is calculated

et al. (2004) show that the representation of ocean transport and dynamics directly affects the relative to the present day period, i.e., mean over 2006-2015 period. In the North Atlantic, Fig. 7 shows
predicted ocean carbon cycle variables. Thus, changes in THC will influence ocean biogeochemical that ToDC for temperature, alkalinity, and oxygen would emerge earlier in the subtropical and earliest
processes through altering the carbon sources and sinks, which then could feedback to the climate. in the North Atlantic drift region. In the Labrador Sea, oxygen ToDC will occur earlier than

Using a single coupled biophysical ocean model (HAMOCC-MICOM, Tjiputra et al., 2013) configured temperature.

Maps of earliest Time of Detectable Change

for different setups, we show that different AMOC strengths lead to different equilibrium states of N
(a) Temperature ToDC (b) Alkalinity ToDC

ocean biogeochemical tracers (e.g., dissolved oxygen, Figs. 1 and 2).
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I11. AMOC-induced changes in North Atlantic oxygen and phosphate
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2015) was performed. A termination simulation where CEis ™"}
stopped abruptly in 2100 is also simulated and resulted in 20F  increasing CE (0x-5xPinatubo)

constant CE (5xPinatubo)

. V. Detecting climate change in the Labrador Sea
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