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Using lagged covariances to assimilate RAPID data

Introduction

Our objective is to assimilate RAPID data into a high-resolution 

ocean model in order to produce more dynamically consistent 

ocean states for use in coupled forecasting. To do this we will make 

use of robust covariance relationships between the AMOC at 26°N 

and high-latitude density anomalies. The strongest relationships 

are found at multi-year lags which cannot be used in a standard 

variational assimilation framework. We describe the methodology 

that has been developed to achieve this and show some 

preliminary results from the RAPID assimilation. 

Methodology and idealised study

• Two-stage assimilation procedure (schematic in Fig. 1).
• Stage 1 is a standard short-window 3DVar assimilating other time-coincident 

data, producing trajectory 𝐱I.
• Stage 2 repeats 1, also assimilates lagged data from several years in the future.
• Use robust time-lagged covariances to augment standard variational scheme, 

which cannot deal with such long lags.
• New cost function term:
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where the index 𝑖 runs over the lags used, 𝐪𝑖 are the innovations between 
RAPID data and the initial trajectory, 𝐑𝑖 are error covariance matrices, 𝐙𝑖
incorporate the lagged covariances, 𝐱b is the background trajectory in the 
second run and ∆𝐱b= 𝐱b − 𝐱I always references the AMOC innovations to the 
trajectory 𝐱I, enabling consistent influence from 𝐪𝑖 over several windows. The 
increments δ𝐱 are used to produce the final analysis 𝐱a. 

• The lag-covariance matrix 𝐙𝑖 plays the role of 𝐇𝑖𝐌𝑖 term in classical 4DVar 
and can be determined by applying linear regression to e.g. a long model run.

• This method avoids need for a computationally expensive adjoint.
• Methodology tested in simple advection model (Thomas and Haines, 2017). 
• First stage assimilates standard data using 3DVar-FGAT, and second stage also 

assimilates future data using lagged regressions.
• Results (Fig. 2) indicate improved analysis errors after second stage.

Lagged regressions

Preliminary results

• So far have run a three-month test of two-stage methodology.
• Regression patterns from HadGEM3 used with assumed RAPID-model 

difference (𝐪) of 3±1Sv.
• Fig. 7 shows difference between the analysed T in the Labrador Sea 

region for the two stages after three months.
• Influence of lagged assimilation clearly observable, particularly at larger 

depth where noise is less important. 

• Fig. 4 shows 𝐙matrix at a lag of 4 years between 3D Lab. Sea T and 
26N AMOC. Regression uses EOF of T that explains most variance. 

• The negative T-AMOC correlation corroborates relationships 
observed previously in runs separating buoyancy and wind forcing 
(Polo et al., 2014), and other studies show similar relationships.
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• Finalise choice of lags and spatial patterns.
• Study boundary EOFs at 26°N which enable propagating signal 

related to low-frequency AMOC to be identified.
• Perform full assimilation spanning multiple years (2007-2015).
• Evaluate performance (e.g. AMOC impact).
• Output will be used to initialise coupled decadal climate prediction 

experiments. 
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Future work
Figure 1: Schematic of two-stage assimilation procedure as 
described in the text.

Figure 2: Results of simulation study: analysis 
errors for (left) first (right) second stage. 

Figure 4: Regressions between 3D Lab. Sea T and AMOC with a 4-year lag: (left) 1km depth (right) 60°N.

Figure 7: Difference between analysed T in Lab Sea region at depth (left) 1km (right) 2km.

Figure 6: Boundary path used to 
study signal propagation.

RAPID assimilation configuration

• We have implemented the lagged regression methodology in 
NEMOVAR code which is used operationally at Met Office & ECMWF.

• First stage is similar to GloSea5 reanalysis (Jackson et al., 2016). 
The following data sets are assimilated: GHRSST and in-situ SST 
(ICOADS), altimetry, EN4 profiles and sea ice (OSI-SAF).

• The second stage additionally assimilates RAPID data.

• Regressions determined using 120y HadGEM3-GC2 coupled 
ocean-atmosphere run; 0.25° ocean (same as GloSea5).

• Fig. 3 shows AMOC anomalies from this run.

Figure 3: AMOC anomaly at 26°N in 120 years HadGEM3-GC2. The blue line shows the value every 
month and the red line is the two-year running mean.

• Labrador sea signals then propagate down 
Western boundary (Fig. 5, 6); differing vertical  
density structures and speeds (Polo et al., 2017). 

• These low-freq. boundary signals can inform 𝐪𝑖 . 

Figure 5: Hovmöller diagram of density 
along boundaries at 1500m  depth.


