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supported discrete current meters and T-C/CTD sensors. The shallowest sensor column gives the range moor_ed sensor performance during ideal-case Eulerian mean, and the means of the daily DWBC transport estimates in stream coordinates. Statistical uncertainties reported for the latter represent
of depths for the various settings of each mooring of that style. the Line W.prog.ram. For each of 95% confidence bounds based on degrees of freedom derived from integral time scales (also reported in days). The 4-layer sum encompasses the two
the 6 mooring sites (labeled W1 to : Labrador Sea and two Overflow water masses while the 5-layer sum adds the surface layer. For comparison, preliminary estimates of the time-mean net
W6), the times and d_epths when ™ }:J:;;T::{I:”HHIQ"”“"'I'I' meridional transport across 26.5°'N from the RAPID/MOCHA program are provided (E. Frajke-Williams, personal communication, 2016). The final column in the
Mooring Latitude Longitude  bottom depth (m)  mooring style shallowest sensor (m) good data were obtained from 2000 ; ; ; ; ; ; ; “;“'*"'“‘||ﬂ|||ﬁ"“”' — table give linear trend estimates of the Line W DWBC transports (x 106 m3/s /year) with 95% statistical uncertainties based on a bootstrap procedure.
Moored Profilers (black lines), fixed- ol | o AT
depth current meters (red broken 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
W1  39°36.32'N 69° 4362'W 2238 MMP: 2004-2008 48 - 85 lines) and fixed-depth Temperature- Eulerian Eulerian average of  statistical  integral RAPID/MOCHA  Line W
Conventional: 2008-2014 62-177 Conductivity (or Temperature- _ Layer 10-yr-average ideal-case composite  daily profiles uncertainty T-scale preliminary 10-y trend
Conductivity-Pressure sensors - 0— e
W2  39°1354'N 69° 26.73'W 2752 Conventional: 2004-2008 1026 - 1033 cyan lines) are shown. In each s | || SURF -2.45 -6.62 -6.83 +0.42 122 0.004 +0.10
MMP: 2008-2014 76 - 98 case, the abscissa spans the period 2000 | i
of the full Line W moored program op ST ULSW -2.66 -3.74 4.33 +0.46 13.2 1.8 0.08 + 0.04
W3 38°5033' N 69° 10.63' W 3948 MMP: 2004-2008 95 - 170 an d the ordinate is pressure (with 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
Conventional: 2008-2014 480 - 650 axis length scaled according to CLSW -5.06 -6.20 -7.37 +1.20 14.7 4.1 0.32 +0.06
mooring site depth). g ssesgessn i i —
W4 38°26.27'N 68° 53.87'W 3686 Conventional: 2004-2008 1040 T A A S 5 . 8 ISOW -3.97 (-4.97) -4.39 -5.77 + 0.93 8.9 -5.5 0.24 +0.06
MMP: 2008-2014 100 - 222 2000 T " | . |
| [ S n—" DSOW -3.74 (-6.14) -3.31 -5.29 +0.50 4.7 -5.3 0.09 +0.06
W5 38" 5.80N 68" 38.95'W 4110 MMP: 2004-2008 988 - 1010 004 205 2006 2007 208 208 2010 2011 202 2013 2018
Conventional: 2008-2014 479 - 492 4-layer -15.43 (-18.83) -17.64 -22.76 + 1.38 10.5 -16.7 0.74 £0.20
W-5 sum
W6 37°28.66' N 68° 18.34'W 4700 Conventional: 2008-2014 268 - 438 0:::::::::::::::::;::::::::::::::::::;::::::::::::::::::;:::::::::::::::::,;::::::::::::::::::;::::::::';‘;';;;;;‘;'.:;;;;;;'.';‘;;;“.“;;‘5.";‘;';;';“.';;”_':::
T e S-layer ~ -17.88(-21.28)  -24.26 -29.59 +2.08 He = 0.74 £0.25
SR Blhid | e E———g S
4000 W il B i e e e e 8 e S S
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
W-6
0ZIﬁI]IﬁiﬁﬁﬁlﬁlﬁlﬁgﬁﬁjﬁiﬁiﬁiIZaﬂilﬁlﬁlﬁlﬁ]jfﬁ;iﬁiIZIZIZIﬁIﬁIIﬁﬁI§ﬁIﬁIﬁIﬁi-ﬁ-j;ﬁ;i-l-iiﬁ-l;ﬁl-ﬁl;ﬁ;lﬁ-lﬁ-;-ﬁi-ﬁﬁﬁ-iﬁiIZIZIZ';*.'.';';';';';;';';';'.'.";'.";';';';'.”;'J;”.'ﬁﬁﬁ
1000 - R --:..I. .............. oo, -------------:::_________::::::::::: -
e B B e e n | ion
ACkn OWIGdgements iggg::i:::i:i:i:i:i:i?:ijiji:i:i::“?'::i:i:iii:iji::?j::i::::i:i:i:i:i:?i:i:i:i:+:+:+:+f+e:e:eiejeéiﬁei:ij:::ifi%:-i:%i%ﬁfiﬁﬁjﬁﬁjﬁﬁ:-i:?ifjﬁif:—::&::-fjﬁ:ﬁi:i CO < us. - S : : : : : :
N—— N SO Iy o MO A roughly consistent picture is starting to emerge of the time-average AMOC. Some 20-25 x 10° m3/s of intermediate and deep water are carried equatorward by
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Foundation with supplemental contributions from WHOI's Ocean and Climate Change Institute. We are grateful for this support and ' _ . X _ _ R ) ,
as well, wish to acknowledge the efforts of a vast number of individuals who contributed to the collection, processing and analysis of (boundary to boundary) equatorward deep water transport estimates at 26.5" and 16" N. While synthesis of these observations into an internally-consistent
the Line W observations. dynamical description of AMOC variability has not as yet been accomplished, we look forward to a time when this will be possible.




