South Atlantic Meridional Overturning Circulation: Real-time Monitoring
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The significant correlation between SSH and the depth of given isotherms (Fig.1) allowed
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Figure 1. Correlations between SSH and Avallable at; http://www.aoml.noaa.gov/phod/indexes/samoc_alt.php
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transect locations. Dotted areas indicate
where the correlations are insignificant.
(c) Examples of the temperature profiles
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locations for the profiles in Figure 1c are
Indicated by triangles in Figure 1d. Note
that the profiles close to the eastern
boundary (red triangles) in Figure 1c are
shifted by 15°C In order to separate the

two examples.

o 2=<] been removed. Error bars indicate two Indication of heat convergence in the subtropical South Atlantic during 2016.

standard errors.

m ' \/ Both MOC and its contributions from the Summary
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W. geostrophic and Ekman transports exhibit ® This is the only effort to monitor MOC/MHT in the South Atlantic in near real-
time at different latitudes.
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For the first time the contributions of the geostrophic and Ekman components to
the MOC/MHT In the South Atlantic are assessed at different latitudes on
South Atlantic MOC Components at 25°S Interannual time scales. For example, at 34.5°S, the geostrophic transport
dominates during 1993-2001 and 2012-2016, whereas the Ekman transport plays a
larger role during 2002-2011.

® Values of MOC/MHT are posted online in the indicators webpage.
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® This work highlights the importance of continuous in situ observations in order to
validate this new methodology to determine MOC and MHT using satellite
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