Motivation -- Hypotheses
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Diabatic processes controlling the growth of long baroclinic oceanic waves
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Local linear Quasi-Geostrophic (QG) stability analysis
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Schematic diagram of the interaction between large scale
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Rossby waves and AMOC low frequency variability™
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What is the link between basin modes (B/)*® and local unstable modes (C/)®?

Analytical experiments

Adiabatic case
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Kinematic eddy viscosity .vs. LW approximation
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» Unstable modes grow about 1000 times faster for a westward shear at large-scale
(Green’s modes™), consistent with a much larger imaginary part of the longwave eigenvalue C

* The kinematic eddy viscosity effect:
* Westward shear: damping at all |k]
> Eastward shear: increase growth rate for small wavenumbers
* Result reproduced in a 2.5 layers QG model and under the Planetary-Geostrophic (PG) appx.
> Does not rely on the vertical resolution nor the QG approximation
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Application to a numerical model
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Double Drake® configuration at 1°:
> 30-40 yr ‘A’MOC variability associated with large scale Rossby waves®'”.
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> Where and how these large scale waves are generated?

MITgecm"” coupled

configuration at 1°

with an idealized

A/ Diagnosing baroclinic energy conversion regions

—uw'p 78, e flat bottom ocean
:.; ;3% N | | | | geometry®
, ) S e 2 active regions at high latitudes:
b — > Western boundary: (0, pocu, )
/ \_// . o
s - 5 el A e ) instability of the zonal current
. > Eastern boundary: (0,p«<v_)

instability of the meridional current
e Local instability of the oceanic mean
state?
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B/ Local linear QG stability analyses of the oceanic mean state

Surf. Rest.

e Most unstable modes found at low latitudes
under the LW approximation
> Weak coherence with the NL. model solution

e Mid- and low-latitudes unstable modes
damped by surface restoring
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> Eastern boundary current unstable

Growth rate of most unstable modes within the Atlantic-like basin i
for a wide range of length-scale

for 3 stability analyses, i.e. a/ under the LW appx. (eq. (2)),
b/ with KEV only in eq. (3) and A =4 10° m’ 57,

and ¢/ with an additional surface restoring (eq. (3))

2 Linear theory of baroclinic instability®® for a local problem, i.e. N°=N*(z); ugzu_g(%}
e Linearizing the QG potential vorticity equation (0,+u, V,)g=0 with g=q+f +@z(ﬁz W) g=Viy (1)
for perturbations of the form '=F(z)e ™1 w,=0
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Filtering Charney’s modes

Diabatic processes
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Kinematic Eddy Viscosity (KEV) Surface Restoring (SR)

A/ Diagnostic
approach

B/ Prognostic
approach
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in adiabatic and
viscous conditions,
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X No large scale
waves

v’ Baroclinic energy

. X Weakly unstable
conversion

v Unstable for a wide
range of length-scale

v Baroclinic energy
conversion

Growth of large scale Rossby waves in the North Atlantic

does not satisfy the LW approximation",

but is rather controlled by diabatic processes

Proposed mechanism for the Double Drake:

Radiative baroclinic instability of the eastern boundary current"’
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