l. Introduction

The South Atlantic Ocean is a crossroads. Influenced by
Southern Ocean inflow from both the east and the west, it is
a place where deep and bottom water masses formed In
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carbon, oxygen and, if feasible, nutrients. This analysis will
be compared to an analysis of variance (ANOVA) intended to
separate the spatial variability Iin the water mass
characteristics associated with each regions from remaining
variability, which is assumed to be temporal (e.g. Figure 6).
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inhibiting abyssal inflow and maintaining regional
asymmetries Iin diapycnal mixing. Also intriguing is the
recognition that these water masses appear to be evolving in
time in their formation regions.
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enhance temporal resolution in the upper water with Argo
oz ielgelil(sii dle[FIE=R2A T Tl i [c R B EE o (PN I e EREI el B 20N IG) . as well as a significant decrease in oxygen (d) and nutrients (f) between
technique. Beginning with the 3 occupations of A10 at 30°S 1992 and 2003 and little significant change between 2003 and 2011, and

: . : : : : : an increase in TIC in the first decade (e). The TIC numbers for the second
l(:)Fltghures 3-4) WZ \(/leII g.:ld, smoo’E[h argf[:l .dlfferte)nced flglds |r} decade have yet to be analyzed.
b) pathways and spatial transformation of deep waters i sl e i e b S . .
potential changes (Figure 5). We will compare to similar analyses that have been performed at

through overturn and mixing; an S
ough overturn and Q., . d | Practical Salinity Difference in Density Space 24°S (e.g. McCarthy et al., 2011). The effect E/W geography at
c) the temporal evolution in overturning pathways ana (5a) 24°S compared to the multiple basins at 30°S is of interest.

properties from the 1990s to present-day. S Lk V. Next

Our NOAA/CVP AMOC study encompasses 3 interrelated
aspects of the subsurface South Atlantic to shed light on:

a) regional (sub-basin) properties distributions and their
associated carbon, oxygen, nutrient, freshwater & heat
budgets;
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between 1997-2015. Overlaid with repeat long transect data (pre-1990
through 2005) from gc’d GLODAP/CARINA databases (courtesy of B.
Carter) and select later GO-SHIP transects from CCHDO
(http://cchdo.ucsd.edu/). Colors indicate 10-year bins.




