The mid-latitude flow is driven by the equator-to-pole T gradient, which is affected by climate change differently at surface (\searrow) and aloft (\nearrow) . How does the mid-latitude dynamics respond? **Does the jet stream become wavier?**

• Using isohypses (iso-Z500) to characterize the flow trajectory.

Init : Mon,14MAR2016 12Z Valid: Tue,15MAR2016 12Z 500 hPa Geopot.(gpdm), T (C) und Bodendr. (hPa)

Fig. 1. Daily Z500 for March 15, 2016, © Wetterzentrale.

• For each day, selecting the isohypse located at \sim 50°N to account for both the seasonal migration and long-term thermal rise of Z500. Isohypse value \sim 5400 m in winter & \sim 5800 m in summer.

• Using a **sinuosity** index to characterize the waviness. SIN = length of the trajectory divided by the length of the straight line.

Fig. 2. Illustrations from Wikipedia.org/Sinuosity.

- Data : ERA-Interim, 24 CMIP5 models & 40 CESM-LENS members.
- The sinuosity is an interesting metric, complementary to more classical indices.

Cattiaux et al. (2016), Sinuosity of mid-latitude atmospheric flow in a warming world, Geophysical Research Letters, 43, 8259-8268, doi=10.1002/2016GL070309.

Sinuosity of mid-latitude atmospheric flow in a warming world

Julien Cattiaux¹, Yannick Peings², David Saint-Martin¹, Nadège Trou-Kechout¹ & Stephen J. Vavrus³ ¹ CNRM, Toulouse, France. ² University California Irvine, U.S., ³ University Wisconsin Madison, U.S.

US CLIVAR Arctic Mid-Latitude Workshop, Washington, February 1–3, 2017

Conclusions

• Recent trends support a wavier flow, but the simulated response to climate change is opposite. Recent trends are likely due to internal variability. • The model dispersion in the sinuosity response is partially explained by the model-dependent response of the equator-to-pole T gradient.

• Except for N-Am in winter, climate models project a generalized decrease in sinuosity in the RCP8.5.

Fig. 6. a. Mean SIN for AT JFM: ERAI vs. CMIP5 (white) & CESM (gray) 1979–2008 & 2070–2099. Nb of models with positive / non-significant / negative changes. b. CMIP5 ensemble-mean projected changes for all sectors & seasons. Values = nb of models agreeing with the ens. mean (e.g. AT JFM has 10 models with a negative change, see **a**).

Focus on winter NH changes

• High SIN decrease \Leftrightarrow strong high-tropospheric tropical warming, strong low-stratospheric polar cooling, & weak Arctic Amplification.

Fig. 7. **a.** Ensemble mean of ΔT (colors) and ΔZ (contours). **b.** Ensemble mean of ΔU (colors) and U (contours). c. Difference of ΔT (colors) and ΔU (contours) between models with SIN increase (ENS1) and high SIN decrease (ENS2). d. Scatter plot Δ SIN vs. Δ Equator-to-pole T gradient (= T[0-55N] - T[55-90N]).

 No link between recent trends and projected changes in SIN. Recent SIN increase likely due to internal variability.

Projected changes

b	JFM	AMJ	JAS	OND
NH	12	14	18	22
AT	10	12	18	17
AS	6	14	14	7
PA	12	10	13	20
AM	9	10	23	11
(day)				
-1 -0.8-0.6-0.4 0 0.4 0.6 0.8 1				

RCP85 change in SD