Early Prediction of Weak Stratospheric Polar Vortex States Using a Causal Precursor Detection Scheme

Authors: Marlene Kretschmer1,2, Jakob Runge3, Dim Coumou1,4

1Potsdam Institute for Climate Impact Research, Germany, 2Potsdam University, Germany, 3Imperial College London, Great Britain, 4VU University Amsterdam, Netherlands

INTRODUCTION

Weak stratospheric polar vortex (SPV) states can cause extreme winter weather in the Northern Hemisphere mid-latitudes. Including stratosphere activity in seasonal model predictions therefore significantly improves skill. Though dynamical models have useful prediction skill of the SPV on synoptic time-scales of about one week, they poorly capture low-frequency processes and therefore have limited or no skill at longer lead-times [1]. Here we introduce a novel empirical prediction approach which builds upon response-guided community detection [2] and a causal discovery algorithm [3, 4].

METHOD

We calculate correlation maps of the precursor fields with the SPV index for different lags (first panel in Fig.1). Grid-points with significant correlation indices of same sign are grouped to communities and their area-weighted mean is computed to create a time-series for each region (second panel in Fig.1).

RESULTS & DISCUSSION

- We identify 471 precursor communities composed of all fields: vT100 (72), SLP (40), SST (278), Z500 (49) and u50 (32)
- Only 4 causal precursors remain after applying the causal discovery algorithm:
  - the lag-1 auto-correlated SPV index
  - two lag-1 vT100 regions over Eurasia and the North Pacific
  - a lag-3 community of SSTs in the tropical Philippine Sea
- The identified causal precursors are physically interpretable and mostly robust for different parameter settings

DATA

We study half-monthly data (ERA-Interim) of linearly detrended climatological anomalies from 1979 – 2015.

METHOD

We then use a multivariate causal discovery algorithm to identify spurious correlations with the SPV due to auto-correlation, common drivers or indirect links (third panel in Fig.1). The remaining links (right part of third panel in Fig.1) are then interpreted as the causal drivers of the SPV.

CONCLUSION

The presented data-driven algorithm proposes a way to objectively identify linear (causal) precursors of a variable of interest. It gives robust and physically interpretable results for the SPV with high prediction skills for lead-times up to two months. Our approach can be used for early warning directly but also to select individual members from ensembles of operational forecast models to improve (sub-)seasonal winter predictions. The approach is generic in nature and can be applied to other climate indices to predict and understand causal links of teleconnections.