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different mid-latitude impacts of different regions of sea-ice loss and the e Control run (CTL): impose annually repeating cycle of historical | ,, BAKA&CHUBER) (contour linear addition of the separate BAKA and CHUBER responses (Fig. 6.1i,iv).
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make it easier to understand the response to pan-Arctic anomalies. * 3 sea-ice loss runs: same as CTL, but add an annually repeating projections of sea-ice for weaker for BAKA&CHUBER than for BAKA+CHUBER (Fig. 6.1ii,iii) = nonlinear.
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positive. Source: 5. Results: Atlantic versus Pacific sea-ice loss
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Arctic weakens/strengthens the stratospheric polar vortex (Fig. 2.1). Dec (Fig. 5.1i; cf. Fig. 2.1).  This implies little influence i =
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AO/NAO (Arctic Oscillation/North Atlantic Oscillation)! and, thus, colder/ IR B Rossby wave propagation is tropospheric response in
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 The weakening/strengthening of the vortex is due to enhanced/ ' | constructive/destructive linear * The negative AO/NAO only i i
suppressed forcing of upward propagating Rossby waves (Fig. 2.2). This s 10 interference between wave-1 causes surface cooling in w j
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