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1. Introduction and Motivation 5. Conclusions

Goal: Identify process contributions to the CMIP5 inter-model spread in Arctic VL s eLargest contributions to the Arctic warming are from the downwelling clear-sky longwave surface flux and cloud

Amplification, because the manner in which a model warms is expected to ‘ \ N radiative effect, both larger than the surface albedo feedback.
influence the connections between the Arctic and the Mid-latitudes. ” *“v \f | |*Overwhelmingly, ocean heat storage is the largest contributor to slowing Arctic warming.

*The characteristics of the surface energy budget annual cycle response to increased CO, are critical to the spatial

*The spatial contributions of this feedback loop likely influence the atmospheric circulation response and the
connection between the Arctic and Mid-latitude weather and climate.
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*Seasonality of the warming likely plays an important role in the connectivity between the Arctic and the mid-
latitudes, because fall and winter is the time of year when the connection is strongest.
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Takeaway: The processes represented in this surface energy budget decomposition control how the Arctic handles the
extra energy it is currently receiving. Understanding how the Arctic climate systems deals with this extra energy is critical
for unraveling the Arctic-Mid Latitude connection. At the heart, interactions between Arctic clouds, lower tropospheric
stability, seasonal ocean heat storage, and the atmospheric circulation hold the key. Further investigation of the physics
controlling these interactions in climate models, specifically understanding the influence of cloud microphysics and
boundary layer mixing, hold promise for progress.

The degree of warming, its causes, and its spatial distribution will have a potentially significant
influence on the pathways through which Arctic changes influence mid-latitude weather extremes,
seasonal predictability, and climate.

Different spatial temperature response => Different Arctic circulation response

p) Methodology. Calculating Individual Feedback Partial Temperature 4. What does the Arctic Figure below illustrates the time series of latent heat flux for a single CMIP5 climate model.
) ] ] '. ) _ The black line marks the isopleth representing the May latent heat flux.
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The increase in the seasonal cycling of ocean heat content is
found to correlate with model Arctic Amplification (r = 0.79)
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3. Results: Relationships between Arctic Amplification and Partial Temperature Contributions
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