Changes in North American Atmospheric Circulation and Extreme Weather: Evidence of an Arctic Connection

Introduction

We test the hypothesis that Arctic amplification (AA) of global warming remotely affects middle latitudes by promoting a weaker, wavier atmospheric circulation conducive to extreme weather. The study is based on the late-21st century over greater North America using the CESM Large Ensemble.

Data

- 40 independent realizations from the Community Earth System Model (CESM) Large Ensemble (LENS)
- Years 1920-2100
- Past forcing, 1920-2005: observed radiative
- Future forcing, 2006-2100: RCP8.5 emissions scenario
- Greater North America (160°W- 50°W)

Methods

Sinuosity: A Measure of Circulation Waviness

Fig. 1. Example of sinuosity metric. Red line is the daily mean 5520 m isohypse at 500 hPa across our study domain. The blue line is the shortest possible distance of this height contour, such that the areas poleward of this line and poleward of the isohypse are equal. Sinuosity equals the ratio of the length of the isohypse to the length of the blue line. Aggregate sinuosity (ASIN) is the weighted mean of five isohypses (5760m, 5640m, 5520m, 5400m, and 5280m) representative of mid-latitude circulation.

Sinuosity Quantifies Extreme Circulation Conditions

Fig. 2. Examples of extreme circulation states, illustrated by 500 hPa geopotential heights (dm). (a) Lowest aggregate sinuosity on record, (b) Highest sinuosity, (c) "Polar Vortex" event in Jan 2014 (ASIN = 95th percentile for Jan), and (d) Superstorm Sandy (98th percentile for Oct).

Steve Vavrus¹, Fuyao Wang¹, Jonathan Martin¹, Jennifer Francis², Yannick Peings³, Julien Cattiaux⁴ ¹University of Wisconsin; ²Rutgers University; ³University of California-Irvine, ⁴CNRS/Meteo-France

Fig. 3. Late-21st century (2081-2100) changes in (a, b) Surface temperature, (c, d) 500 hPa heights, and (e, f) 500 hPa zonal wind speed in (left) January and (right) August. Shaded regions denote where the ensemble-mean changes exceed the intra-ensemble standard deviation.

Fig. 4. As in Fig. 3 but for changes in zonal wind speed and sinuosity in Jan and Aug over greater N. America. Thin lines = individual ensemble members, and bold lines = ensemble mean. Solid bold lines are where the ensemble-mean change exceeds the intra-ensemble standard deviation.

Fig. 8. Change in August wind speed frequency in the late 21st century vs. the late 20th century.

Conclusions

- Arctic Amplification promotes regionally varying ridging aloft and strong seasonal differences in circulation patterns (Fig. 3)
- Changes in circulation strength and waviness are inversely correlated in both winter and summer (Fig. 4)
- Weaker and wavier summer circulation over Plains favors extreme heat and dryness (Fig. 5 - 8)
- Circumpolar band of atmospheric ridging in summer that promotes Plains drought may be forced by declining snow cover (Fig. 9–10)

Next Steps

- Revise manuscript in review in Journal of Climate Vavrus et al. (2017): Changes in North American atmospheric circulation and extreme weather: evidence of an Arctic connection.
- Evaluate snow cover-summer circulation linkage more rigorously

This work was funded by the National Science Foundation's Office of Polar Programs

Template provided by: "posters4research.com"