High latitude snow: teleconnections with the tropics
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Hypotheses Result: snow depth variability

Working Hypothesis: MJO modulation of key Arctic parameters
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(1) Spring snow depth across the Northern precipitation, circulation
Hemisphere varies intraseasonally

* For the first time, variability 1n springtime
Northern Hemisphere snow depth was
explored by phase of the MJO.

» Statistically significant regions of daily snow :
depth change anomalies were found 1n March, . Phs«*sgf”o« f' PhG\stg?f’““i 2
April and May in both North America and  “a4Q
Eurasia, sometimes exceeding 100% of the
monthly normal for MJO phase.

4. Arctic sea ice
and snow extent

(2) Eurasian snow water equivalent in October is
connected to the Madden-Julian oscillation
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(3) Modulations occur by atmospheric Rossby
wave teleconnections cont

Figure 5: March daily anomalies of snow depth change (shaded; cm day-1) and 500-hPa height (black contours every 20 m,
positive solid and negative dashed), for MJO phases 1-8. Gray sectors in phases 5 and 7 indicate strongest variability in those two
phases (Barrett et al. 2015)

M ar Ch TABLE 1. Spearman rank correlations between 500-hPa height and daily snow depth change as well as surface temperature and daily
snow depth change for March 1980-2013. The Eurasian sector includes 45°-75°N, 15°-105°E, while the North American sector includes

45°=T75°N, 135°-60°W. Bold values indicate the phase with the largest correlation coefficient.
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Snow depth and water equivalent: o Northern Hemisphere. (Barrett et al. 2015)

* NASA MERRA reanalysis: snow depth product i » Correlation coefficients (r?) between anomalies  *™' e T
(1.0° lat x 0.67° lon horizontal spacing), 1979-2014 o of snow depth change and both surface air | « ' N

* ERA-Interim/Land reanalysis: snow water temperature and 500-hPa height approached
equivalent (0.75° lat x 0.75° lon horizontal spacing), -0.6, indicating moderate to strong physical
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Figure 1: Daily snow depth Fhange (colored; in cm day?) from 1980-2013 for (a) March, (b) April and (c) May, relatlonShlp between bOth’
e NASA:;RRA reanalysis (Barreft et al. 201 .  Similar patterns were found for April and May,
| but with weaker statistical relationships,
Atmosphere: ol 2

indicating the strongest 1ntraseasonal

« NCEP/DOE AMIP-II reanalysis: daily 500-hPa variability of snow depth in March.
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. . " 1 Figure 6: March daily anomalies of snow depth change (shaded, in cm day-1), as in Fig. 5, and anomalies of 2-m air temperature
lat )¢ 2 . 5 @) lon horlzontal SpﬂClng), 1 979_20 1 4 50 o s g_zvbekn;yll(BK;rrreeitc;)tn;)-uzrglgfiﬁve, blue negative). Gray bounded regions indicate Eurasian and North American sectors reported in
 ERA-Interim reanalysis: 500-hPa height (0.75° lat x 0 ! ;
0.75° lon horizontal spacing), 1980-2010 0 50 100 150 . . o 3 ey
Longitude Result: snow water equivalent variability

Figure 2: October mean daily snow water equivalent change, in mm day?, from 1980-2010, from ERA-Interim/
Land reanalysis (Henderson et al. 2016)
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e (Circulation and SWE anomalies were most
strongly correlated during MJO phases

Methods 4-7.

height anomalies. (c, d, h, i,
-3 m, and n) Mean daily 500-
“ 5 hPa height anomalies for
MJO phases 1, 5, 4, and 7,
respectively, selected for
T ],"f;’fi__j having strongest correlations

to height anomalies in those
: " nodes. (e, j, and o) Anomalies
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 Anomalies of SD and SWE were calculated with respect to monthly means, project preferentially onto those patterns.

instead of seasonal means, to avoid seasonal shifts in both variables.
Conclusions and acknowledgements
Self-organizing maps (SOM):
* Fields of daily change in SWE (961 total days) were organized into 15
nodes by a SOM technique.

v The Madden-Julian Oscillation modulates spring-season snow depth changes
o Modulation depends on MJO phase and month
v The MJO also modulates autumn-season changes in Eurasian snow water equivalent

 Different numbers of nodes, as well as different numbers of iterations ol s . .
(10,000 to 20,000 were explored, with the results shown for 15 nodes and e son _| e ot e o Some patterns of 500-hPa height and SWE change showed preference for certain MJO phases
9 9 9 igure 4: neural network and number of members (In

20 OOO . . parentheses) for daily SWE over Eurasia for October days,
1terations. 1980-2010, (Henderson et al. 2016).
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