Atmospheric response to Arctic sea ice: the importance of the background state

Doug Smith, Nick Dunstone, Adam Scaife, Emma Fiedler, Dan Copsey and Steven Hardiman

1. Experiments:
 • 1979 to 2009 (30 years)
 • Control: observed sea ice concentration
 • Perturbed: reduced Arctic sea ice
 • 10 ensemble members
 • AMIP – observed SSTs
 • CPLD – upper 200m of ocean free
 • AMIP_CPLD – repeat AMIP but with CPLD SST bias

2. Temperature response:
 • Larger response in CPLD
 • Surrounding ocean warms
 • Can reach the tropics

3. Mean sea level pressure response:
 • AMIP: “heat low” in all seasons
 • Positive NAO in DJF
 • CPLD: negative NAO in DJF

4. AMIP_CPLD response:
 • Add CPLD SST bias to AMIP
 • Reproduces negative NAO
 • Background state is key

5. Planetary waves:
 • Decrease in upward EP flux at surface 50-60°N in all experiments
 • Consistent with reduced baroclinicity (weaker Equator to pole temperature gradient)

6. Explanation:
 • Easier to consider increased Arctic sea ice (increased upward EP flux)
 • Response of Atlantic jet depends on propagation of EP fluxes
 • More equatorward propagation leads to interaction with jet
 • EP flux divergence/convergence on poleward/equatorward side of jet
 • Jet shifts polewards (i.e. positive NAO for increased Arctic ice)
 • Response depends on background refractive index

7. Real world response:
 • Cannot be diagnosed from regression
 • Possibility of “emergent constraint” but must be based on the underlying physical cause of model spread (i.e. the refractive index)

8. Summary:
 • Sign of NAO response to Arctic sea ice depends on the background state
 • Upward planetary waves from the surface are reduced when Arctic sea ice is reduced, consistent with reduced equator to pole temperature gradient and reduced baroclinicity
 • NAO response depends on propagation of planetary waves, which is controlled by the refractive index of the background flow
 • Real world response cannot be diagnosed from regression
 • “Emergent constraint” might be possible
 • Need coordinated multi-model experiments → please contact Doug Smith (doug.smith@metoffice.gov.uk) if you are interested in participating