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INTRODUCTION

To date, global observations of densely covered sea surface
temperature (SST) made by infrared and microwave satellites
are unable to provide reliable SST retrievals near the TC center
due to cloud cover, rain, and sea state contamination
[Gentemann et al., 2010]. Therefore, routinely deployed In situ
ocean instruments that observe the vertical profile of ocean
temperature, salinity, and currents near the storm are important
additions to an effective measurement strategy. Such
measurements can provide an improved representation of the
ocean conditions in the path ahead of a moving TC, and
iImproved Initialization of both coupled and uncoupled TC

models.

APPROACH

Recently, Cummings and Smedstad [2014] showed that an
adjoint-based procedure based on a three-dimensional
variational analysis Is another accurate method to assess the
Impact of ocean observations. The advantage of using the
analysis adjoint is that the data impact is solely due to
assimilation of the observations at each update cycle time and
not from the effect of air-sea coupling. To answer the question
of where best to obtain the TC ocean observations that will
positively benefit a given air-sea coupled TC model forecast,

we examine the feasibility of applying a modified targeted

observing form of the adjoint-based ocean data method used

by Cummings and Smedstad [2014].
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Table 2. Description of COAMPS-TC Experiments

Experiments lsaac Hilda Matthew
Simulation Periods 25-29 August 2012 10-14 August 2015 3-9 October 2016
Assimilation Atmos:12 X 4 km Atmos: 45 X 15 X 5 km Atmos: 45 X 15 X 5 km
Ocean: 4 km Ocean: 5 km Ocean: 5 km
With AXBT With AXBT and ALAMO With AXBT and ALAMO
Targeted Atmos:12 X 4 km Atmos: 45 X 15 X 5km Atmos: 45 X 15 X 5km
Ocean: 4 km Ocean: 5 km Ocean: 5 km

Without AXBT Without AXBT and ALAMO Without AXBT and ALAMO

METHODOLOGY

The procedures for calculating the Impacts of observations on
forecast error and for targeted observing are similar, but differ
In two Important ways. In both applications data impact (de24)
IS measured as the inner product of a 3-D adjoint sensitivity
vector at the observation location J (8J/oy; output from the
NCODA adjoint) and model-observation difference (|y-x, |)
expressed by the following data impact equation derived by

Langland and Baker [2004a]. &,=(0-Hs).a/a), )

where J Is the forecast error sensitivity, y Is the observation, H
IS the forward operator, and X, Is the model first guess field. For
the forecast error problem, the adjoint sensitivity vector Is
computed from the gradient of the difference between
COAMPS-TC 24 and 36 h forecasts valid at the same time

relative to a verifying analysis: A = (=, )-(1, ~1)) (1~ %, ) (5 ;). Q)

where X,, and X5, are the forecast states at 24 and 36 h length,
and X, Is the verifying analysis. The outer brackets represent a
scalar inner product. The forecast error gradients are projected
from model space to observation space using the adjoint of the

NCODA variational assimilation procedure according to:

o 1dy=K" Al 3)

where KT is the adjoint of the Kalman gain matrix
KT=[HBH"+R]*HB, with B and R the background and
observation error covariance. The observation sensitivity vector
IS the forecast error gradient in observation space; its elements

exist at the observation locations.

RESULTS
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SUMMARY

A 3D variational ocean data assimilation adjoint approach is used
to examine the impact of ocean observations on coupled tropical
cyclone (TC) model forecast error for three recent hurricanes:
Isaac (2012), Hilda (2015), and Matthew (2016). Targeted ocean
observation regions from these three hurricanes, show that the
largest positive impacts in reducing the TC model forecast errors
are sensitive to the initial pre-storm ocean conditions such as the
location and magnitude of pre-existing ocean eddies, storm-
Induced ocean cold wake, and model track errors. We
demonstrated that a new innovative adjoint-based targeted
ocean sampling technique Is capable of providing skillful
guidance on where to deploy the ocean observations in order

to reduce coupled model forecast biases.
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