

Impacts of ENSO on Air-Sea O₂ Exchange: Observations and Mechanisms Yassir A. Eddebbar¹, Matt C. Long², Laure Resplandy³, Christian Rödenbeck⁴, Keith B. Rodgers³, Ralph F. Keeling¹ ¹ Scripps Institution of Oceanography, ² National Center for Atmospheric Research, ³ Princeton University, ⁴ Max Planck Institute for Biogeochemistry. Contact: yeddebbar@ucsd.edu

μmol/L

Bopp et al. 2013

1. Motivation:

The detection and attribution of oceanic O_2 loss due to anthropogenic warming remain uncertain in the tropics due to lack of in-situ [O₂] observations and poorly known effects of natural variability (e.g. ENSO).

Observed $[O_2]$ change 1950-2010

Projected $[O_2]$ change by 2100

3. Research Questions:

- 1. What can observations of APO (i.e. O₂ and CO₂) and models tell us about ENSO impacts on air-sea O_2 exchange and $[O_2]$ variability?
- 2. What are driving mechanisms of ENSO-related O₂ variability?
- 3. What is role of atmospheric transport in observed APO variability?

4. Atmospheric Observations vs Models:

2. APO as a tracer of Oceanic O₂ Flux:

We use observations of Atmospheric Potential Oxygen (APO=O₂+1.1CO₂), an atmospheric tracer of oceanic O₂, and hindcast CORE2 ocean simulations of CESM, IPSL, and GFDL to assess ENSO effects on air-sea O₂ flux.

Observations of APO in tropical Pacific from Scripps (center) and Japanese (right) network show opposing APO responses to ENSO.

Both ocean models and atmospheric inversion show a positive correlation between Niño3.4 index and APO flux (RINV=0.5; RCESM=0.6; R_{IPSL}=0.6) with 3-5 months APO lead. APO is driven by O₂ flux (R₀₂=0.8, 3 mo O₂ lead), suggesting outgassing of O₂ during El Niño.

5. Mechanism of ENSO-driven O₂ Variability: b) Regression of anomalies vs Niño3.4 index a) Tropical Pacific (20°N-20°S) flux of O₂

6. Atmospheric Transport Effects

APO anomalies due to ENSO effects on air-sea O₂ flux are amplified by atmospheric transport (weakened easterlies). East-west dipole explains observed discrepancies between Scripps and Japanese networks.

ENSO variability of O_2 flux (F_{O2}) is dominated by transport processes (F_{VENT}), and is buffered by reduced biological production (F_{NCP}) and thermodynamic flux of O_2 (F_{THERM}).

7. Implications for TPOS

In the absence of continuous interior [O₂] observations, impacts of ENSO on interior [O₂] distribution and budget remain poorly understood. Additional BGC sensors can provide deeper understanding of changes in OMZs. In turn, new O₂ observations can provide insights on physical dynamics (e.g. tracer of water masses and changes in thermocline depth, constraints on EUC strength and ventilation, etc.

 F_{VENT} reflects significant ΔO_2 anomalies along oxycline due to internal waves and ocean-atmosphere feedbacks (weaker easterlies, shallower and weaker upwelling) during El Niño, weakened ventilation by zonal equatorial jets & weakened O₂ demand).

References

Eddebbar, Y. A., M. C. Long, L. Resplandy, C. Rödenbeck, K. B. Rodgers, M. Manizza, and R. F. Keeling (2017), Impacts of ENSO on air-sea oxygen exchange: Observations and mechanisms, Global Biogeochem. Cycles, 31,

