Structure and variability of the Deep Western Boundary Current
(DWBC) from 2 years of observations at 60°N in the Irminger Sea
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1. DWBC Mooring Array

3. DWBC transport 4. Drivers of transport variability

As part of the trans-basin array of the Overturning Calculation of the volume transport is extremely sensitive to the direction chosen to Previous estimates of the DWBC transport at this location have (necessarily) used a ‘static’ backgrouna

in the Subpolar North Atlantic Programme represent the major axis of the flow. Rather than work within the coordinate system dictated density field. The contribution th_a!t variability in the thickness o_f the DWBC makes to the vqume_ transport
(OSNAP), the Irminger Sea Deep Western by the orientration of the mooring array, we prescribe an ‘along-slope’ orientation that (a) hag th_erefore never b_een quar)tlfled. Decomposing the Iaye_r thickness (h) and mean layer velocity (u) !nto
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deployed (Figure 1). the DWBC (Figure 4) and (b) maximises the DWBC transport (Figure 5). series (uh) can be broken down into 4 terms:
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