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Motivation Frequency-domain diagnostic: energy transfer equations
— Spectral transfers reveal

* What are the key processes Advection of Kinetic Energy Windstress . o
responsible for driving ocean and > 1 T the relative contributions of
P L i Tkpw(,y,w) = ff’@iot Re[py.J (V=pe: pr)] Twindstress(Y>w) = g, FelpiWek] each term to the overall
atmosphere variability? ° Buoyancy enerav budeet. Positive
e  What are the sources and sinks of Advection of Potential Energy T, (2,y,w) = +—Re[(ps — p1) & 5y DULE o
. . X —  xa uoyancy =y & Htor (negative) values indicate
energy in the ocean and in the Tpp,i(t,y,w) = 75— Re[(pit1 — pi) J(pi, pi+1)) , ,
it Bottom Drag that energy is being added to
atmosphere? 6.0 —
> With layer k=1,2,3 and interface i = 1,2 Toottomdrag (T, Y, w) = gz Re[p3Vaps) (extracted from) the system.

e What are the relative contributions

of each of these energetic | f
processes across a range of Results so tar

timescales? Energy spectra in wavenumber (left) and Ocean: Spectral Energy Transfers (7 years)
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° Lea p_frOg t|mestepp|ng frequency behavior appears reduced
* Arakawa C-grid: p and T points o ,
e Ocean resolution: 5 km  KE removes energy at high frequencies and adds energy at low * Plot spectral energy transfers for 100+
Atmosphere resolution: 80 km frequencies. years to look at low-frequency behavior
. ' ' - ' ' *  Perform spectral energy analysis on
+  Length of run: 7 vears (so far) Wind sjcre.f,s appelars to remove energy in the ocean - consistent with . P gy Yy
other findings (O'Rourke et al., 2017 and von Storch et al., 2007): the partially coupled, and ocean-
mean wind adds energy to the system at all frequencies, whereas the only/atmosphere-only QGCM runs
perturbation wind component removes energy at most frequencies. * Do full frequency-wavenumber energy
Since we take a Fourier Transform in the analysis, the mean transfer analysis with higher
components have been removed, and we are left with the behavior of atmosphere resolution = look at effect
the anomalous wind field only. of ocean eddies on atmosphere
* The two large spikes in both the windstress and bottom drag terms * Perform frequency-domain analysis on
correspond to the time it takes a wave to cross the atmospheric temperature budgets in the ocean and
(Hogg et al., 2006) domain of the model. atmosphere mixed layers
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