

Long Term Observations of Tropical Precipitation for Model Development and Improvement

Scott Collis¹, Robert Jackson¹, Valentin Louf², Christian Jakob², Erika Roesler³, Benjamin Hillman³, Shaocheng Xie⁴, Alain Protat⁵

1. Argonne National Laboratory, Argonne, IL, United States, 2. Monash University, Melbourne, Australia, 3. Sandia National Laboratories, Albuquerque, NM, 4. Lawrence Livermore Nartional Laboratory, Livermore, Ca, United States, 5. Bureau of Meteorology, Melbourne, Australia,

1. Introduction	2. Darwin	3. Instrumentation	4. Echo top height (ETH) retrieval	
The Climate Model Development and Validation-Regionally Refined Meshes (CMDV-RRM) focuses on enhancing the representation of clouds and convection in the DOE's Energy Exascale Earth System	Nov. to May, Northern Australian Monsoon [1] + Madden-Julien Oscillation (MJO) [2] important	CPOL: C-band POLarization radar, PPI scans @ 18 elevations every 10 min. from 1998-2017 CPOL - season 2013/2014. $(9)_{50.0}^{52.5}$ a) - 10 min (25965 scans) \overline{Z}_c [ref.] = 47.7 ± 0.11 dBZ	Python ARM Radar Toolkit (Py-ART) [6] used to process, grid, + calculate texture (std.	5000 4000 Hydrometeors 30000 20000
(E3SM) Model model using regionally refined meshes (RRM).	Higher echo top heights in break vs. monsoon, multimodal distributions	$(\widehat{g} \ 52.5 \ b)$ $(\widehat{g} \ 52.5 \ b)$ $(\widehat{g} \ 52.5 \ b)$ $(\widehat{g} \ 50.0 \ - \cdot \overline{Z_c}[ref.] = 47.7 \pm 0.03 \text{ dBZ}$ $(\widehat{g} \ 47.5 \ - \cdot \cdot \overline{Z_c}[ref.] = 47.7 \pm 0.03 \text{ dBZ}$	dev. of 3-gate window) of radial velocity	Noise Noise Noise Velocity texture

5. Statistical distributions

6. Spatial distribution

ETH > 7 km occurrences during day in break conditions. Hector & seabreeze convection prevalent. More counts over ocean during active MJO.

Now that the data set has been prepared the key question is: Can E3SM in RRM mode reproduce the same seasonal variability we observe?

7. Next steps

Bimodal ETH distributions observed → stable layer inhibiting more moderate convection

Distributions more bimodal when MJO inactive over Australia. Similar heights, but more unimodality in monsoon (not shown).

References

[1] Drosdowsky, W., 1996: Variability of the Australian summer monsoon at Darwin: 1957–1992. J. Climate, 9, 85–96, doi:10.1175/1520-0442(1996)009<0085:VOTASM>2.0.CO;2

[2] Wheeler, M.C. and H.H. Hendon, 2004: An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. *Mon. Wea. Rev.*, 132, 1917–1932, doi: 10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

[3] Kumar, V.V., A. Protat, P.T. May, C. Jakob, G. Penide, S. Kumar, and L. Davies, 2013: On the Effects of Large-Scale Environment and Surface Types on Convective Cloud Characteristics over Darwin, Australia. *Mon. Wea. Rev.*, 141, 1358–1374, doi:10.1175/MWR-D-12-00160.1.
[4] May, P.T. and A. Ballinger, 2007: The Statistical Characteristics of Convective Cells in a Monsoon Regime (Darwin, Northern Australia). *Mon. Wea. Rev.*, 135, 82–92, doi: 10.1175/MWR3273.1.

[5] Minnis, P., S. Sun-Mack, D. F. Young, P. W. Heck, D. P. Garber, Y. Chen, D. A. Spangenberg, R. F. Arduini, Q. Z. Trepte, W. L. Smith, Jr., J. K. Ayers, S. C. Gibson, W. F. Miller, V. Chakrapani, Y. Takano, K.-N. Liou, Y. Xie, and P. Yang, 2011: <u>CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part I: Algorithms</u>. IEEE Trans. Geosci. Remote Sens., 49, 11, 4374-4400.

[6] Helmus, J.J. and Collis, S.M., 2016: The Python ARM Radar Toolkit (Py-ART), a Library for Working with Weather Radar Data in the Python Programming Language. Journal of Open Research Software. 4(1), p.e25. DOI: http://doi.org/10.5334/jors.119

Monsoon more widespread over ocean

130.0 130.4 130.8 131.2 131.6 132.0

8. Give Me The Data!!!!
Data will be submitted as an ARM
PI product, this is in process now.
Contact Scott, Valentin or Alain.
Some data is available on NERSC.

This poster has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This research was supported by the Climate Model Development and Validation activity funded by the Office of Biological and Environmental Research in the US Department of Energy Office of Science of Science. Computing resources were provided by the Laboratory Computing Resource Center of Argonne National Laboratory.

