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eddies transfer heat between the
boundary current and the
interior (Fig. I).

In this study we investigate the influence of the eddies on:
* the downwelling
* the deep convection in a marginal sea
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and the downwelllng with respect to surface fluxes is examined. Deep Western Boundary Current (OWRC) spin-up. Black lines denote topography contours with intervals of 500m. years under consideration.
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Fig.4: Mean eddy kinetic energy (EKE, shading) and the winter mixed layer depth Fig.6: (a) Vertical transport over the four areas, indicated in the inset figure in (2), and total domain. 200 400 800 1200 200 400 800 1200 200 400 800 1200 0 12 24 36 48 60 12 24 36 48 60 12 24 36 48 60 —0
(MLD, contours c.i. = 500 m). Blue lines denote the annual mean surface heat (b) Vertical velocity at 1000m depth for the REF simulation. x (km) x (km) x (km) months months months
fluxes in W m=2. All have been calculated from a five year average after a 15 . . . . Fig.7: Anomalies from REF simulation of EKE (in cm? s, shading) and MLD (in m, contours) for Fig.9: (a) Cross section of a snapshot of the vertical distribution of the passive tracer at the end of year 16 for
year spin-up (shaded area in Fig.2). * total dOWﬂWG”'“g in the basin of 3.0 Sv (at d depth of 1000 m, Flg6a) (a) COLD and (b) WARM. Depth integrated eddy advection of heat (in W m) for (c) WARM, REF, indicated by the red line in the inset figure, superimposed on the isopycnal surfaces (in kg m-3, black
* net downward transport takes place in areas | and 3 (F|g 6&) (d) REF and (e) COLD. contours). The passive tracer released at the beginning of year 16 in the convection area (dashed lines). The inset
. . . figure shows the initial concentration of the tracer. Time evolution of the concentration of passive tracer in
* the downwelling is concentrated close to the boundary (Fig. 6b) depth integrated over area | for (b) WARM, (c) REF and (d) COLD..
* Eddies are important for deep convection since they determine its location and extent, together with the surface heat flux. * Indirect link between the variations in surface heat flux and the process of convection.
* Enhanced downwelling is seen along the lateral boundaries in regions of enhanced eddy activity. * Lateral heat fluxes associated with the eddy field determine the amount of sinking that takes place.

Key points

. Eddies affect: * the location of convection ll. Enhanced downwelling along the lateral boundaries lll. Dense water is transported from the interior towards the
* the magnitude of downwelling at the boundary and not where convection is deepest lateral boundaries.
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