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Background

» The climate of the Holocene is closer to present-day
conditions than to the ones during Ice age

» Itis believed that substantial variations occur in the
Atlantic Meridional Overturning Circulation (AMOC)
during this time period (e.g. Kissel et al. 2013)

» Around 6000 kyrs BP and before, there are
indications of the Sahara being partially covered by Deep flow dynamics proxy records
vegetation (so-called “Green Sahara”)

Mailto: didier.swingedouw@u-bordeaux1.fr

variability over the Holocene

Didier Swingedouw’, Yannick Mary' Frédérique Eynaud’, Christophe Colin?

TEPOC-CNRS, University of Bordeaux, France

The North Atlantic Ocean circulation

| { T
Y o

The Green Sahara and its
impact on the Mediterranean

from Kissel et al. (2013)
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1. Can we further confirm the AMOC variations using multi-proxy records of SST

2. Is there any link between Sapropel events in the Mediterranean and AMOC
variations over the Holocene?
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deep water

B Strong summer monsoon

1) Holocene data in the North Atlantic

Map of the marine sediment cores compiled with SST proxy

*» We compiled available cores in the North Atlantic sector

providing Sea Surface Temperature (SST) data with time
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Table of the data compiled
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2) Pseudo proxy analyses
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PCA of HadISST data with empirical orhtogonal function ina) and principal
component in b). On the left the first mode and on the right the second.

*» We perform a Principal Component Analysis (PCA)
on the available data points to filter out similar WM o e g e oy q s g | WS
signals from our database
*» To estimate the spatial representativeness of our
database, we use a pseudo-proxy approach
applied on hadISST data covering the period 7
1870-2010 (Rayner et al. 2003) - 3 B
% We find that performing the PCA on the whole low-pe-S '
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points from our database gives very similar results T ] &
for the pattern and time series of the first two
modes g ;
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variability and of its signature on SST (e.g. Zhang
et al. 2008) o T =

First mode from SST proxies
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b) PC1 evolution
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We hypothesis that the same may well Second mode from SST proxies

be true for our paleo-ocean SST % Eoiz (*'?_'i?;jr_ﬂ_.-_ e T Y
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The first mode is indeed reminiscent [ S\ /§%; q{g »
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general cooling of the Northern ° /:%iffg I
Hemisphere from 9 kyrs BP. ) CL»\» o | &
The second mode resembles AMOC on] N0 R
reconstruction from Kissel et al. (2013) oW sw W ww W ¢
From this result, we find an AMOC PR

enhancement in the Early Holocene

and a weakening from around 7 <

kyrs BP ¥ =

While the AMOC enhancement can be §
related with the decrease of ice sheet

melting, what can explain the AMOC
weakening later on? S
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3) Model simulations

% We use the IPSL-CM5A-LR (Dufresne et al. 2013), a coupled AOGCM [ akciomins \
participating in last CMIP5 database. 38N | L -
% The ocean (NEMO) has a horizontal resolution of 1-2° and 31 vertical | .
levels; the atmosphere (LMDz) has a horizontal resolution of around 36N
2° (96x95) and 39 vertical levels
< The model also includes sea ice (LIM2) and land surface (ORCHIDEE) i [l |
models as well as biogechemical ocean module (PISCES) ]
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*» The representation of Gibraltar Strait is made by enhancing the number of

grid points there and playing with viscosity Parametrisation of the Gibraltar Strati flow in
ocean model NEMO

Table summarizing the two simulations analysed
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+ When compared with Levitus data, the T \
representation of the Mediterranean =
Outflow (MOW) has correct temperature
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and salinity properties and depth in the son
control simulation

% When leaving Lagrangian tracers (using Ly
ARIANE software) at the Gibraltar Strait,
we find a simulated MOW of 2.2 Sv e I o . TN |
comparable to the 1.8 Sv obtained when ) ;0.1 section ot Gibrottor 5 Z:Col sj:to :Cbm; W S 8
doing the same within the %" resoution = AR

GLORYS ocean reanalysis

% The hosing of 0.1 Sv over the
Mediterranean is large, but represents a |
Nile outflow of only around half present-day ...
Amazon flow (present-day: Nil=3 mSyv ;
Amazon=200 mSv)
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4) MOW impact on the AMOC HosMed-Control: year 1-300

Sea Surface Salinity

% Salinity in the Mediterranean Sea decreases a lot and no more deep water is
formed, leading to a collapse of MOW production
% Part of the SSS anomaly is leaving the Mediterranean along the Canary current
% Surprisingly the SSS is increasing in the North Atlantic
“* The barotropic circulation changes show an enhanced subpolar gyre (SPG)
% The surface circulation changes indicate that more water from the North Atlantic D S S S
drift enters the SPG and increases the MLD Barotropic Stream Function
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** As a consequence of MOW
reduction and AMOC-related

heat transport increase, the | ol _ :
North Atlantic is strongly 0° - 1\? 3 \v/ ‘gﬁsgv\, ** |In the Nordic Seas, the classical
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Discussions and conclusions (113" resolution) with an active MOW or with no MOW
(New et al. 2001)
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> A new compilation of paleo-ocean SST data and their statistical analysis suggest MoV h

a maximum of AMOC around 6-7 kyrs BP

» The increase of River Nile discharge during the Green Sahara period can have 5 i s
contributed to enhancement of the AMOC until the Mid-Holocene TS eeSmmssss b

» The end of Green Sahara could have then led to a MOW resumption, thus 7 S el * ;
reducing the AMOC from the mid-Holocene N

» The mechanisms by which the MOW affects the AMOC are related with gyre R
response to MOW: when the MOW collapse, the Azore surface current is reduced
and the water is following the Atlantic drift in place, so that more subtropical (STG)
water is reaching the SPG, forming more deep water there

» Such a scenario of Azore current modification is coherent with higher resolution
ocean model from New et al. (2001)

» The IPSL model results is not entirely consistent with lvanovitch et al. (2013)
results, indicating a potential sensitivity of this result to the model used.

» The next step of the HAMOC project will be to release gy tracer in the simulations
and compare with deep coral data to better evaluate the gyre adjustments
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