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Motivation for Extremes 
Flood Damages 

 
•  From 1983 – 2000 Western States 

experienced ~$24.7 Billion in flood damages 
•  ~$1.5 Billion annually  
 
Droughts cause slow and long term Damages 
•  Recent prolonged drought in the West 
 
Flood drought whiplash in California 
 
 
Increasing frequency/strength/damages of 
Climate extremes 
 
 



Scientific Needs 
•  Understanding how extremes are enabled 
 
•  Space-Time Modeling – Return Levels  

–  Climate extremes  
–  Extremes of decision variables  
(Multivariate Extremes) 

 
•  Tools for modeling extremes at multiple time scales - Downscaling 

–  Sub-seasonal, Seasonal, Interannual and Multi-decadal 
  

•  Modeling Extremes in Space-time is crucial for effective planning 
management of natural resources 

 



Methods/Applications Suite 

Understanding how extremes are enabled 
•  Moisture sources and pathways 
•  Clustering of Extremes 
Application: Western US 
 

 
Tools for modeling extremes at multiple time  
scales – Downscaling 
•  Downscaling precipitation extremes –  

–  QR, BMA 
•  Stochastic Weather Generator 
Application: Upper Colorado River Basin 
 
 
Space-Time Modeling of extremes and Multivariate Extremes 
•  Bayesian Hierarchical Modeling 
Application: Upper Colorado River Basin (Taylor Park Dam) 
 



Extremes 
Clusters 

Moisture Sources/Pathways 
 

Bracken et al., 2015, JGR 



Data for Modeling 

Bracken et al., 2015, JGR 



Extremes – Magnitude and Timing 

Bracken et al., 2015, JGR 
 

Magnitude 

Timing 



Extremes – Magnitude and Timing Clusters 

•  Consistent with topography and seasonal climatology 
–  Winter precipitation/snow and Summer monsoonal Rainfall in SouthWestern US 

Bracken et al., 2015, JGR 
 

Magnitude Cluster 



Extremes – Moisture sources and Pathways 

Bracken et al., 2015, JGR 
 

•  North Central Pacific an 
Important source 

–  Reminiscent of Atmospheric 
Rivers (ARs) in winter 

•  Land source important  
During summer for inland 
regions 

•  Ratio of number of rain 
trajectories during La Nina vs  

El Nino 
•  Red – More trajectories during  
El Nino 

•  ~1000 stations with near 
Complete data 1948 – 2013 
•  3-day rainfall maximum for each  
year and each season 
•  HYSPLIT trajectories. 
 



Downscaling Extremes 
(Post Processing Dynamical Model Output) 

Mendoza et al., 2016, MWR 



Motivation 
•  Dynamical model Forecasts – NWP, Seasonal and Multi-decadal 

Forecasts – are on Spatial grid and far from being perfect 
 
•  Information and Decisions are made at point or regional scale 
•  Need for Downscaling/Postprocessing  
 
•  Why would we want a statistical reinterpretation of dynamical 

model outputs? (Wilks, 2011) 
 
•  There are several techniques for post-processing Extremes from 

Dynamical Models: 
i.  Multinomial Logistic Regression. 
ii.  Quantile Regression. 
iii. Bayesian Model Averaging. 
 

From	Karl	et	al.	(1989)	



Data 
 
• Daily outputs from the WRF-4km reanalysis 
(predictors): precipitation, air temperature, air 
pressure, specific humidity and wind speed 

• Verification data (predictand): precipitation at 93 
SNOTEL sites for eight water years (October 1st, 
2000 – September 30th, 2008). 
	

Colorado	Headwaters	Region	

Predictors	(WRF)	
Predictand	(SNOTEL)	

Study area & data 
Site 
 
•  The Colorado Headwaters Region 

offers a major renewable water 
supply in the southwestern US, with 
approximately 85 % of the 
streamflow coming from snowmelt. 



Select	the	four	nearest	
neighbors	from	the	
reanalysis	grid	as	poten6al	
predictors	(MnLR	and	QR)	
or	as	ensemble	members	
(BMA).	

Perform	experiments	at	
specific	SNOTEL	sites	to	find	
suitable	power	transforma6on	
of	the	form		
xp	=	x	η Fit	models	at	all	sites	(93),	

and	es6mate	the	cumula6ve	
distribu6on	func6on	(cdf)	at	
each	sta6on	and	6me	step.	

Generate	ensembles	of	
precipita6on	(Nens	=	100)	
by	sampling	randomly	
from	the	cdfs	generated	in	
the	previous	step.	

Perform	probabilis6c	
verifica6on	over	the	period	
Oct/2000	–	Sep/2008:	
- Brier	Skill	Score.	
- Reliability	diagrams.	
- Discrimina6on	diagrams.	
- Rank	histograms.	

Step	1	

Step	2	

Step	3	

Step	4	

Step	5	

Approach 
QR: 

MnLR: 



Bayesian Model Averaging, BMA (Sloughter et al., 2007) 
 
-  The predictive pdf is a mixture of a discrete component at zero 

precipitation and a Gamma distribution 
 
-  There are 2 steps: 

 1. Estimate PoP as a function of the forecasts fk 
 2. Specify the PDF of the amount of precipitation given that it is 
not zero. 
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Results 

•  Postprocessing/ 
Downscaling 
Improves skill 
Relative to WRF 
 



Results 

Brier	skill	scores	(BSS)	 Rank	histograms	



•  WRF has skill in Fall/Winter 
•  Spatial skill of post-processing consistent with spatial skill of WRF 

•  MnLR shows poor performance 
•  QR best for skill and reliability 
•  BMA is best for discrimination, statistical consistency and robust 

estimates of uncertainty 

Results 



Downscaling Using Stochastic Weather 
Generators 

(Post Processing Dynamical Model Output) 

Verdin et al., 2016, J. Hydrology 



Generalized Linear Model (GLM) 
Based Weather Generator 

GLMs can model a variety of distributions of the response variable Y 
•  Skewed distribution (e.g., Gamma, Weibull) 
•  Discrete/Binary (e.g., Binomial, Poisson) 
•  Mean of the distribution – i.e., E(Y │X1, X2 , . . ., Xp) linearly related to  
     Covariates 

•  Fit GLMs at each location 
•  Maximum Likelihood Estimation of Parameters 
•  Spatial models on βs to enable simulation 
At any location 
Verdin et al. (2015); Kleiber et al. (2012,2013) 



Conditional Generation 
Seasonal and Multidecadal 

•  Additional Covariates 

•  Domain averaged seasonal total precipitation, ST1; ST2; ST3; ST4 – 
for the four seasons  

•  Domain averaged seasonal max and min temperatures – SMN and 
SMX.. 

•  Other covariates can be added as needed – e.g., climate indices – 
ENSO, PDO etc.        Verdin et al. (2016)  



Application 
Agriculture Management 

Crop Modeling 
Seasonal and Multidecadal 

La Pampa ~ Argentina 

Verdin et al., 2014 and 2016 



•  Crop Simulation model (DSSAT) 
•  Crop yields with Water Table Depth  
(MIKE-SHE) 
•  Stochastic daily weather on a 5km x  
    5km grid 
•  Ensemble of WTD and crop yields 
•  Agriculture planning and management 

•  1961-2013 daily weather data 
   Verdin et al. (2016)  



Seasonal Simulation – OND 2010 – Dry year 

•  Re-sample ensemble of climatology OND season Precip/temp with A:N:B as 
weights 

•  Generate daily weather Ensemble with the above Covariates 
•  Ensemble of weather Reflects uncertainty  

OND 2010 Precip. 
15:35:50 – A:N:B 
 
OND 2010 Temp. 
40:35:25 – A:N:B  
 
• 2012 Wet Year 



Seasonal Simulation – Conditioned on Climate 
Forecast 

•  Conditional simulation captures the observed variability quite well 
•  Unconditional reproduces climatology 



Seasonal Simulation – Conditioned on Climate Forecast 

•  Unconditional simulation shows 
–  A wet bias relative to conditional 
–  A cool bias in Max temperature 



Multi-decadal Simulation 

•  Seasonal Precipitation, Max Temp 
And Min Temp, 1961 - 2013 
 

•  Unconditional 
Simulations 
(a) Precip. Occurr. 
(b) Precip. Amounts 
(c) Max Temp. 
(d) Min Temp 
 

•  Conditional 
Simulations 
 



•  Precipitation 

•  Wet Days 

Simulations for the 
Period 2015 – 2050 
 

•  Unconditional 
Simulations repeat 
the climatological 
Cycle 
 
•  Conditional  
Simulations are  
consistent with  
the projections 
 
 



Space-Time Modeling of Extremes 
Bayesian Hierarchical Model 

 

Bracken et al., 2016, WRR 



Bayesian and Extreme Values 

Bracken et al., 2016, WRR 

Can model  
•  Sea Level 
•  Precipitation 
•  Streamflow 



Data for Modeling 

Bracken et al., 2016, WRR 



•  Return levels with 
confidence intervals 

 
•  Consistent with topography 

•  Model (GEV)  
parameters obtained  
at any location 

Bracken et al., 2016, WRR 



Multivariate Nonstationary Extremes 
- Precipitation 

- Flow 
- Reservoir Level 

Bracken et al., 2017, in review WRR 



Motivation 
•  Frequency curves for precipitation, flow and reservoir elevation are 
Estimated independently, making uncertainty propagation difficult 
 
•  Return levels are developed under assumption of temporal stationarity 

•  Need for modeling extremes with temporal 
nonstationarity 



Application – Taylor Park Dam, Colorado 

Bracken et al., 2017, in review WRR 



Model 
- Incorporate temporal 
nonstationarity 

Bracken et al., 2017, in review WRR 



Results – Nonstationary 100-year Return Level 

Reservoir Level 

Flow 

Snow 

•  Joint modeling  
Reduces uncertainty 

Bracken et al., 2017, in review WRR 



Results – Joint Relationships 

•  Variable correlations are very well captured with 
joint modeling, compared to independent modeling  

•  Joint Modeling 

•  Modeling variables separately 

Bracken et al., 2017, in review WRR 



Summary and Parting Thoughts 
•  Large scale climate features modulate moisture availability and 

transport to produce climate extremes in the Western U.S 
•  Significant seasonal signatures in sources 
•  ENSO effect on frequency of extremes 

•  Bayesian Hierarchical Modeling offers powerful and general 
framework for modeling extremes with robust quantification of 
uncertainty 
•  In Space 
•  Incorporate Temporal nonstationarity 
•  Of several variables jointly (Multivariate Extremes) 
•  And provide various return levels  
 

•  Climate Change projections can be incorporated as covariates   
 

•  Effective infrastructure management and societal responses for 
mitigating impacts of extremes are enabled 

 



Summary and Parting Thoughts 
•  Weather generators offer attractive way to simulate space-time 

ensembles of daily weather 
•  Covariates are easily incorporated 

•  Seasonal average precipitation, temperature etc. 
•  Other covariates can also be used – weather types, NWS 

forecasts etc. 
•  Enabling to simulate weather sequences conditioned on Seasonal 

and Multidecadal Climate Projections 
 

•  Can be used as an effective ‘Downscaling’ technique 

•  Easily coupled with hydrologic models to provide ensemble streamflow 
forecasts; capture forcing uncertainties  
•  Can significantly improve upon ESP 
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