

Statistical Modeling of Hydroclimate Extremes

Balaji Rajagopalan Department of Civil, Environmental and Architectural Engineering & Co-operative Institute for Research in Environmental Sciences (CIRES)

> University of Colorado Boulder, CO

CLIVAR PPAI Breakout

August 9, 2017

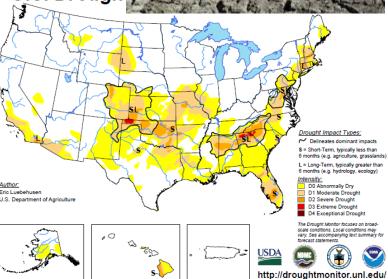
Motivation for Extremes

Flood Damages

- From 1983 2000 Western States experienced ~\$24.7 Billion in flood damages
- ~\$1.5 Billion annually
- Droughts cause slow and long term Damages
- Recent prolonged drought in the West
- Flood drought whiplash in California

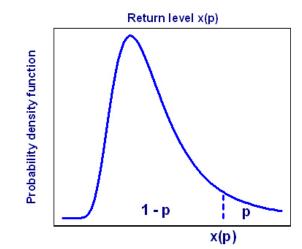
Increasing frequency/strength/damages of Climate extremes



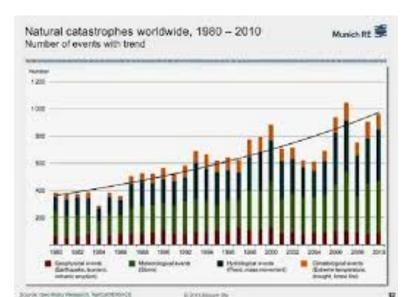


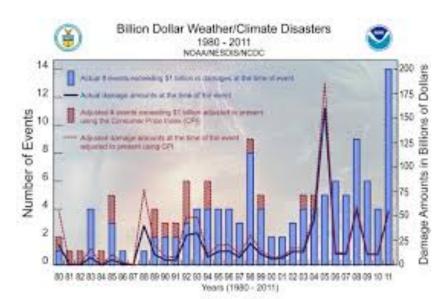
Scientific Needs

- Understanding how extremes are enabled
- Space-Time Modeling Return Levels
 - Climate extremes
 - Extremes of decision variables (Multivariate Extremes)



- Tools for modeling extremes at multiple time scales Downscaling
 - Sub-seasonal, Seasonal, Interannual and Multi-decadal
- Modeling Extremes in Space-time is crucial for effective planning management of natural resources





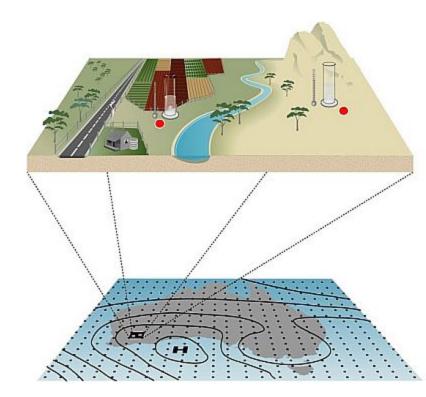
Methods/Applications Suite

Understanding how extremes are enabled

- Moisture sources and pathways
- Clustering of Extremes Application: Western US

Tools for modeling extremes at multiple time scales - Downscaling

- Downscaling precipitation extremes QR, BMA
- Stochastic Weather Generator
 Application: Upper Colorado River Basin



Space-Time Modeling of extremes and Multivariate Extremes

Bayesian Hierarchical Modeling
 Application: Upper Colorado River Basin (Taylor Park Dam)

Extremes Clusters Moisture Sources/Pathways

Data for Modeling

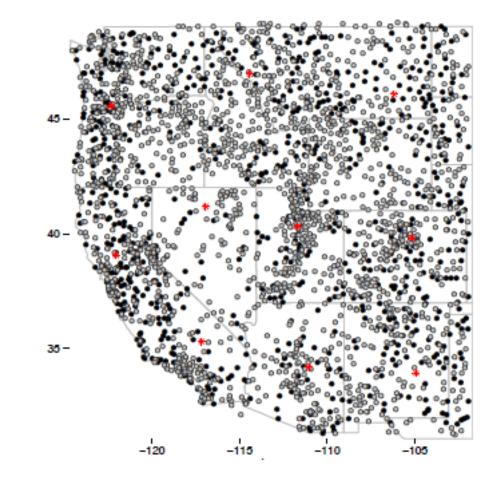
Precipitation Data

Global Historical Climatology Network (GHCN), daily total precip data

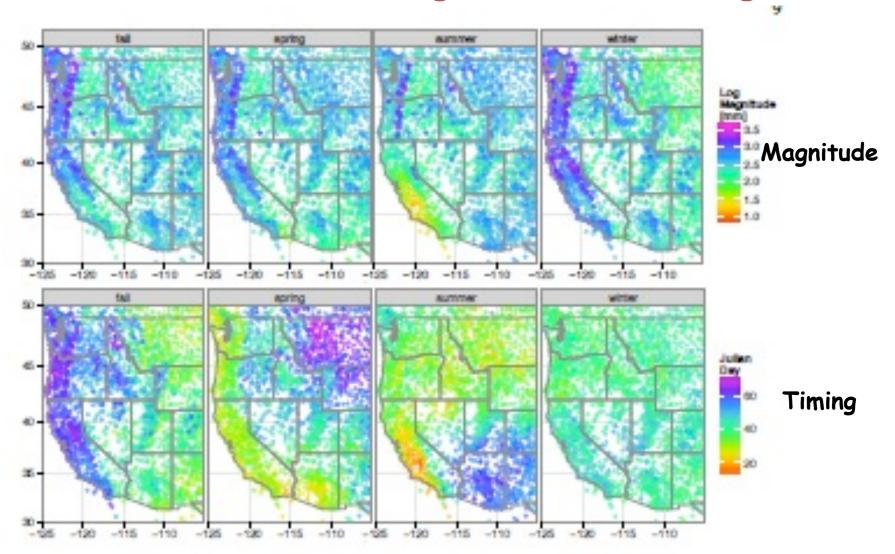
- ~2500 stations with near complete data from 1948-2013
- 3 day aggregation window
- Fall maxima

Very large region/dataset for typical Bayesian spatial model

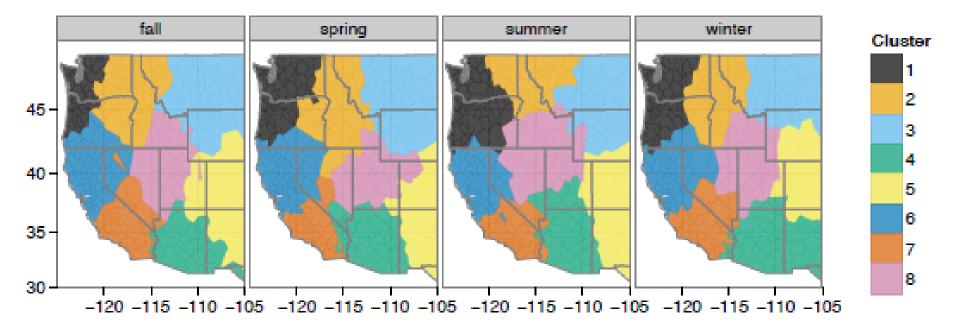
- Complete
- Incomplete
- * Knot



Extremes - Magnitude and Timing



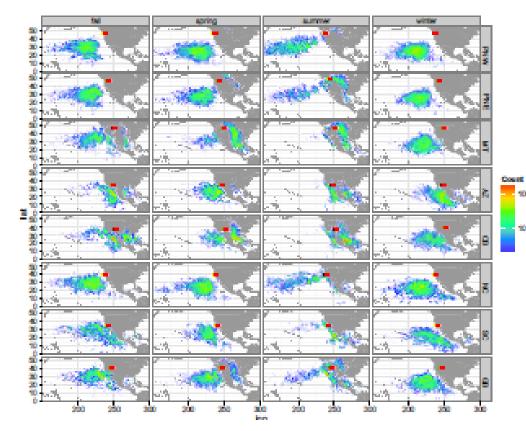
Extremes - Magnitude and Timing Clusters

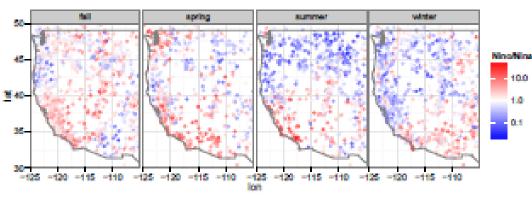


Magnitude Cluster

- Consistent with topography and seasonal climatology
 - Winter precipitation/snow and Summer monsoonal Rainfall in SouthWestern US

Extremes - Moisture sources and Pathways





- North Central Pacific an Important source
 - Reminiscent of Atmospheric Rivers (ARs) in winter
- Land source important During summer for inland regions
- ~1000 stations with near
 Complete data 1948 2013
- 3-day rainfall maximum for each year and each season
- HYSPLIT trajectories.

Ratio of number of rain trajectories during La Nina vs Nino

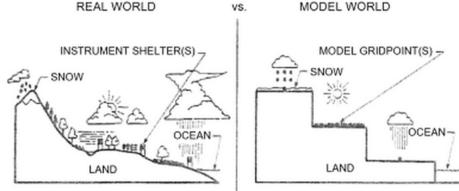
Red – More trajectories during

Downscaling Extremes (Post Processing Dynamical Model Output)

Mendoza et al., 2016, MWR

Motivation

- Dynamical model Forecasts NWP, Seasonal and Multi-decadal Forecasts – are on Spatial grid and far from being perfect
- Information and Decisions are made at point or regional scale
- Need for Downscaling/Postprocessing
- Why would we want a statistical reinterpretation of dynamical model outputs? (Wilks, 2011)
- There are several techniques for post-processing Extremes from Dynamical Models:
 REAL WORLD VS. MODEL WORLD
- i. Multinomial Logistic Regression.
- ii. Quantile Regression.
- iii. Bayesian Model Averaging.

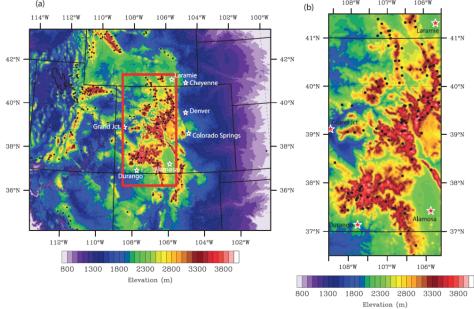


From Karl et al. (1989)

Study area & data

Site

• The Colorado Headwaters Region offers a major renewable water supply in the southwestern US, with approximately 85 % of the streamflow coming from snowmelt.

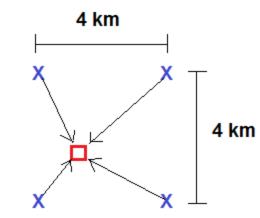


Colorado Headwaters Region

Data

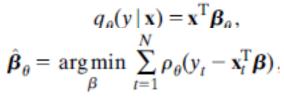
•Daily outputs from the WRF-4km reanalysis (**predictors**): precipitation, air temperature, air pressure, specific humidity and wind speed

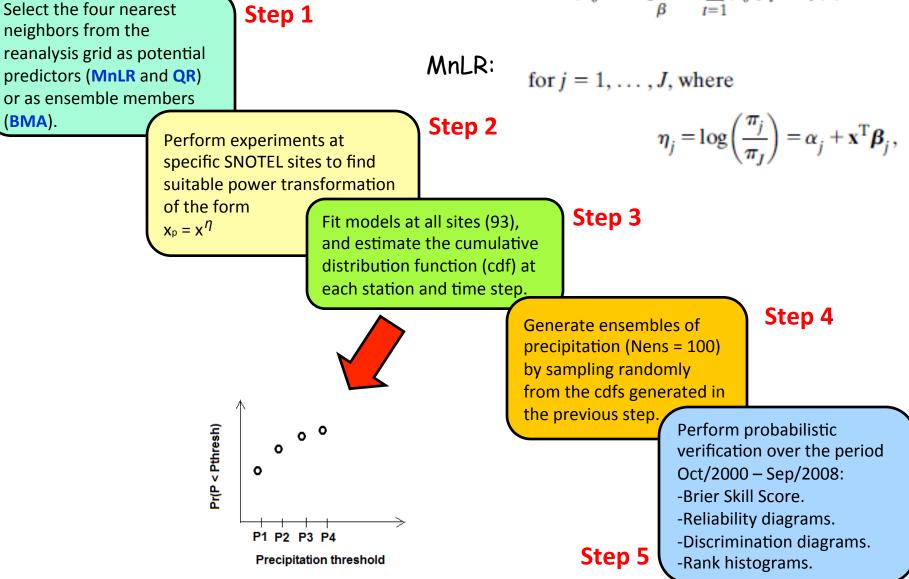
•Verification data (**predictand**): precipitation at 93 SNOTEL sites for eight water years (October 1st, 2000 – September 30th, 2008).



Approach

QR:





Bayesian Model Averaging, BMA (Sloughter et al., 2007)

- The predictive pdf is a mixture of a discrete component at zero precipitation and a Gamma distribution
- There are 2 steps:

1. Estimate PoP as a function of the forecasts fk

2. Specify the PDF of the amount of precipitation given that it is not zero.

Estimation of pdf
$$p(y | f_1, ..., f_K) =$$

$$(y \mid f_1, ..., f_K) = \sum_{i=1}^K w_i h_i(y \mid f_i)$$
 $\sum_{i=1}^K w_i = 1$

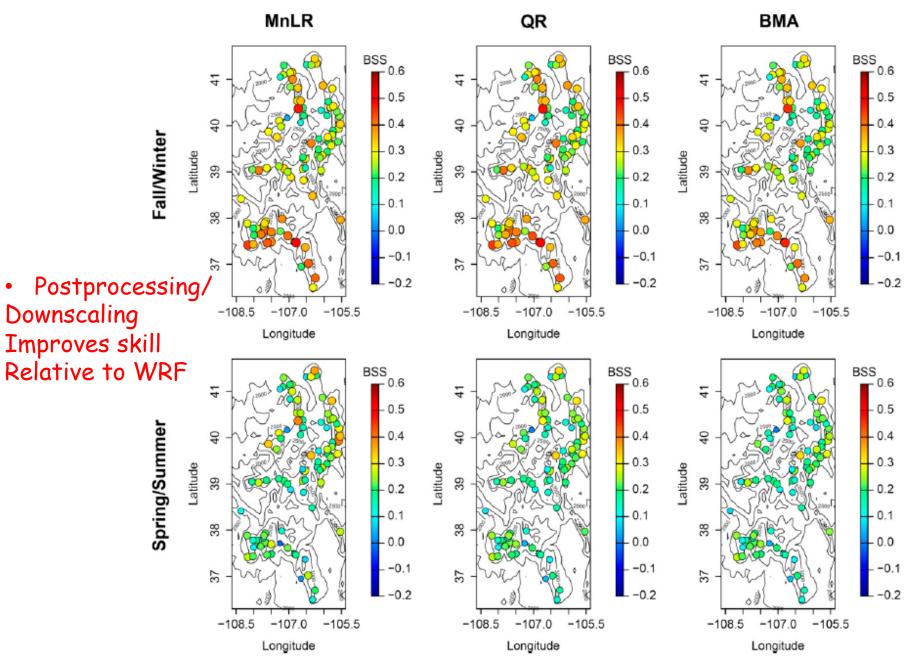
Estimation of hi

$$\begin{split} h_i(y \mid f_i) &= P(y = 0 \mid f_i) I[y = 0] \\ &+ P(y > 0 \mid f_i) g_i(y \mid f_i) I[y > 0] \end{split}$$

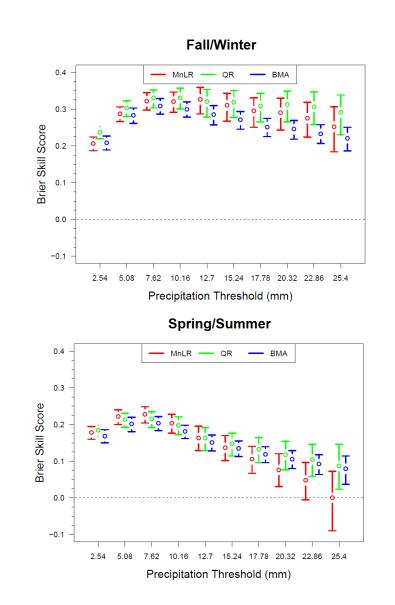
gi has the shape of a Gamma function

$$g_{i}(y \mid f_{i}) = \frac{1}{\beta_{i}^{\alpha_{k}} \Gamma(\alpha_{i})} y^{\alpha_{i}-1} \exp(-y / \beta_{i})$$
$$\mu_{i} = b_{0i} + b_{1i} f_{i}^{1/3}$$
$$\sigma_{i}^{2} = c_{0i} + c_{1i} f_{i}$$

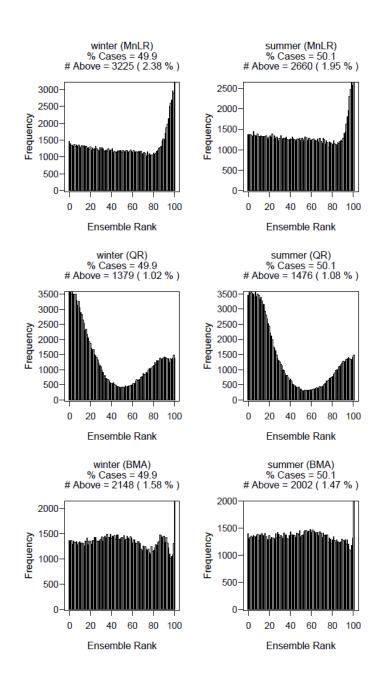
Results



Results



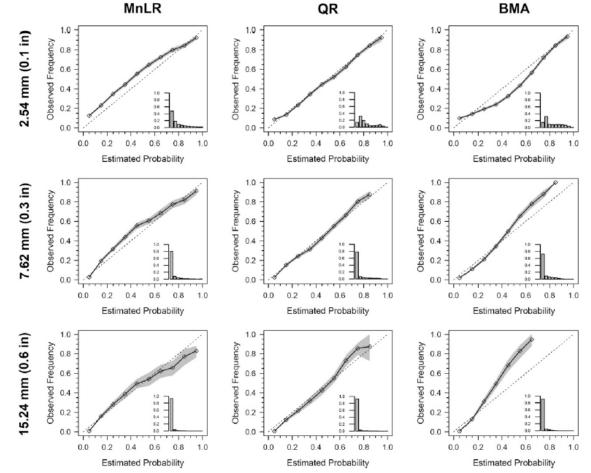
Brier skill scores (BSS)



Rank histograms

Results

- WRF has skill in Fall/Winter
 - Spatial skill of post-processing consistent with spatial skill of WRF
- MnLR shows poor performance
- QR best for skill and reliability
- BMA is best for discrimination, statistical consistency and robust estimates of uncertainty
 MnLR
 QR



Downscaling Using Stochastic Weather Generators (Post Processing Dynamical Model Output)

Verdin et al., 2016, J. Hydrology

Generalized Linear Model (GLM) Based Weather Generator

- GLMs can model a variety of distributions of the response variable Y
- Skewed distribution (e.g., Gamma, Weibull)
- Discrete/Binary (e.g., Binomial, Poisson)
- Mean of the distribution i.e., E(Y | X1, X2, ..., Xp) linearly related to Covariates

Precipitation occurrence

$O(\mathbf{s}, t) = \mathbb{1}_{[W_O(\mathbf{s}, t) \ge 0]}$ $W_O(\mathbf{s}, t) \sim \operatorname{GP}(\mathbf{X}_O(\mathbf{s}, t)^{\mathrm{T}} \boldsymbol{\beta}_O(\mathbf{s}), C_O)$

 $\begin{aligned} A(\mathbf{s},t) &\sim \operatorname{Gamma}(\alpha_A(\mathbf{s}), \alpha_A(\mathbf{s})/\mu_A(\mathbf{s},t)) \\ \mu_A(\mathbf{s},t) &= \exp(\mathbf{X}_A(\mathbf{s},t)^{\mathrm{T}}\boldsymbol{\beta}_A) \end{aligned}$

Temperature

Precipitation amount

 $\mathbf{X}_O(s,t) = (1, O(s, t-1), \cos(2\pi t/365), \sin(2\pi t/365))$

$$Z_N(\mathbf{s},t) = \mathbf{X}_N(\mathbf{s},t)^{\mathrm{T}} \boldsymbol{\beta}_N(\mathbf{s}) + W_N(\mathbf{s},t)$$
$$Z_X(\mathbf{s},t) = \mathbf{X}_X(\mathbf{s},t)^{\mathrm{T}} \boldsymbol{\beta}_X(\mathbf{s}) + W_X(\mathbf{s},t)$$

$$\begin{aligned} \mathbf{X}_i(s,t) &= (1, Z_N(s,t-1), Z_X(s,t-1), \cos(2\pi t/365), \\ &\quad \sin(2\pi t/365), r(t), O(s,t)) \qquad \text{for } i = N, X \end{aligned}$$

- Fit GLMs at each location
- Maximum Likelihood Estimation of Parameters
- Spatial models on βs to enable simulation

At any location

Verdin et al. (2015); Kleiber et al. (2012,2013)

Conditional Generation Seasonal and Multidecadal

Additional Covariates

Precipitation occurrence

 $O(\mathbf{s},t) = \mathbb{1}_{[W_O(\mathbf{s},t) \ge 0]}$ $W_O(\mathbf{s},t) \sim \mathrm{GP}(\mathbf{X}_O(\mathbf{s},t)^{\mathrm{T}} \boldsymbol{\beta}_O(\mathbf{s}), C_O)$

Precipitation amount

$$A(\mathbf{s}, t) \sim \text{Gamma}(\alpha_A(\mathbf{s}), \alpha_A(\mathbf{s})/\mu_A(\mathbf{s}, t)$$
$$\mu_A(\mathbf{s}, t) = \exp(\mathbf{X}_A(\mathbf{s}, t)^{\mathrm{T}}\boldsymbol{\beta}_A)$$

Temperature

 $\mathbf{X}_{O}(s,t) = (1, \dots, ST1(t), ST2(t), ST3(t), ST4(t))$

 $X_A(s,t) = (1, \dots, ST1(t), ST2(t), ST3(t), ST4(t))$

$$Z_N(\mathbf{s},t) = \mathbf{X}_N(\mathbf{s},t)^{\mathrm{T}} \boldsymbol{\beta}_N(\mathbf{s}) + W_N(\mathbf{s},t)$$
$$Z_X(\mathbf{s},t) = \mathbf{X}_X(\mathbf{s},t)^{\mathrm{T}} \boldsymbol{\beta}_X(\mathbf{s}) + W_X(\mathbf{s},t)$$

 $\mathbf{X}_{i}(s,t) = (1, \dots, SMN1(t), SMN2(t), SMN3(t), SMN4(t), SMX1(t), SMX2(t), SMX3(t), SMX4(t))$

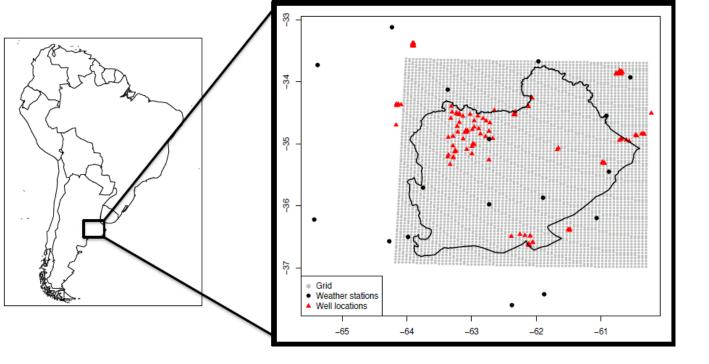
for i = N, X

- Domain averaged seasonal total precipitation, ST1; ST2; ST3; ST4 for the four seasons
- Domain averaged seasonal max and min temperatures SMN and SMX..
- Other covariates can be added as needed e.g., climate indices -ENSO, PDO etc.
 Verdin et al. (2016)

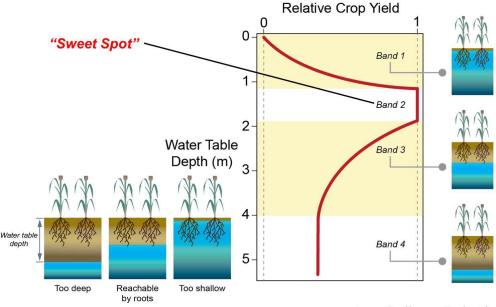
Application Agriculture Management Crop Modeling Seasonal and Multidecadal La Pampa ~ Argentina



Verdin et al., 2014 and 2016

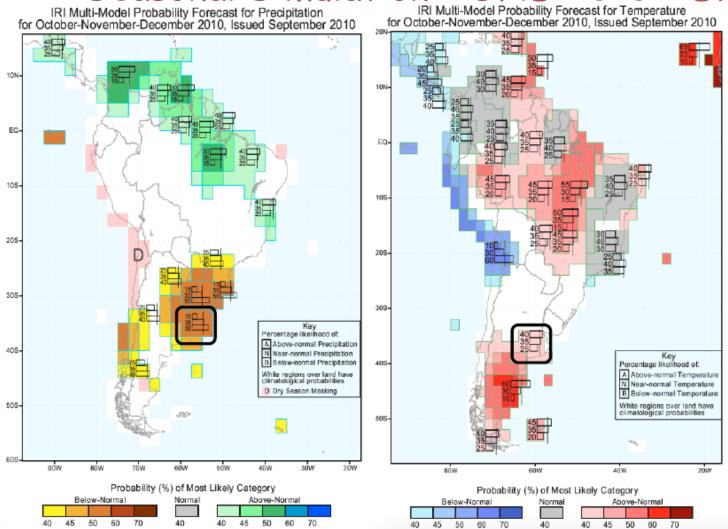


- Crop Simulation model (DSSAT)
- Crop yields with Water Table Depth (MIKE-SHE)
- Stochastic daily weather on a 5km x
 5km grid
- Ensemble of WTD and crop yields
- Agriculture planning and management
- 1961-2013 daily weather data Verdin et al. (2016)



courtesy: Guillermo Podestá

Seasonal Simulation - OND 2010 - Dry year



OND 2010 Precip. 15:35:50 - A:N:B

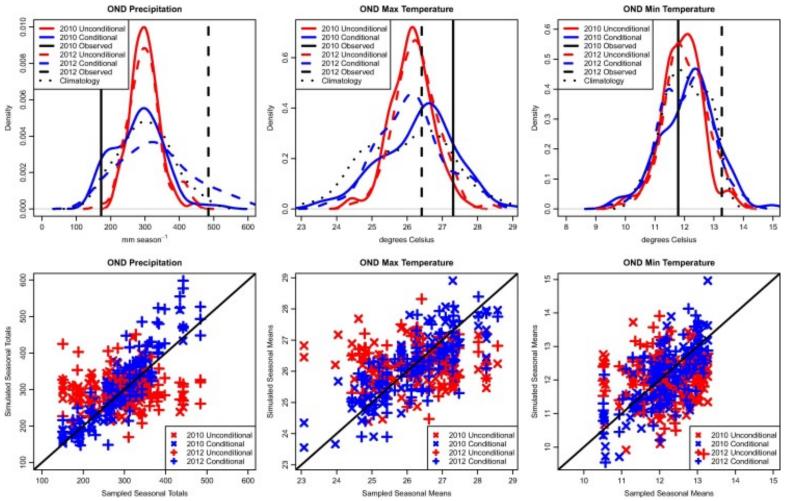
OND 2010 Temp. 40:35:25 - A:N:B

•2012 Wet Year

- Re-sample ensemble of climatology OND season Precip/temp with A:N:B as weights
- Generate daily weather Ensemble with the above Covariates
- Ensemble of weather Reflects uncertainty

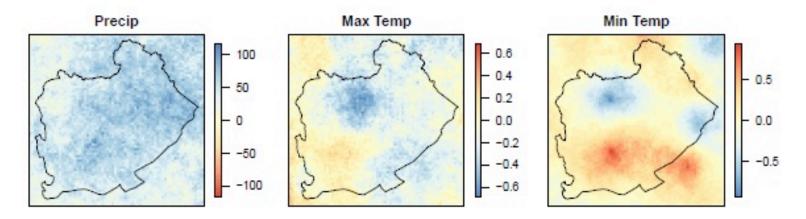
Seasonal Simulation - Conditioned on Climate

Forecast

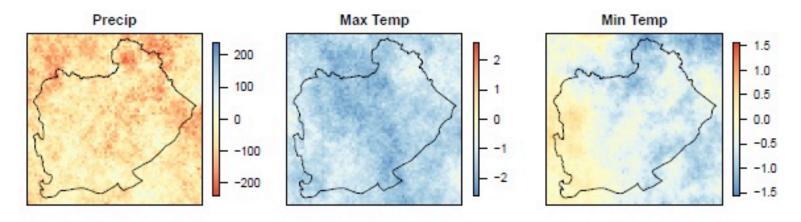


- Conditional simulation captures the observed variability quite well
- Unconditional reproduces climatology

Seasonal Simulation - Conditioned on Climate Forecast Differences in ensemble mean (unconditional minus conditional):

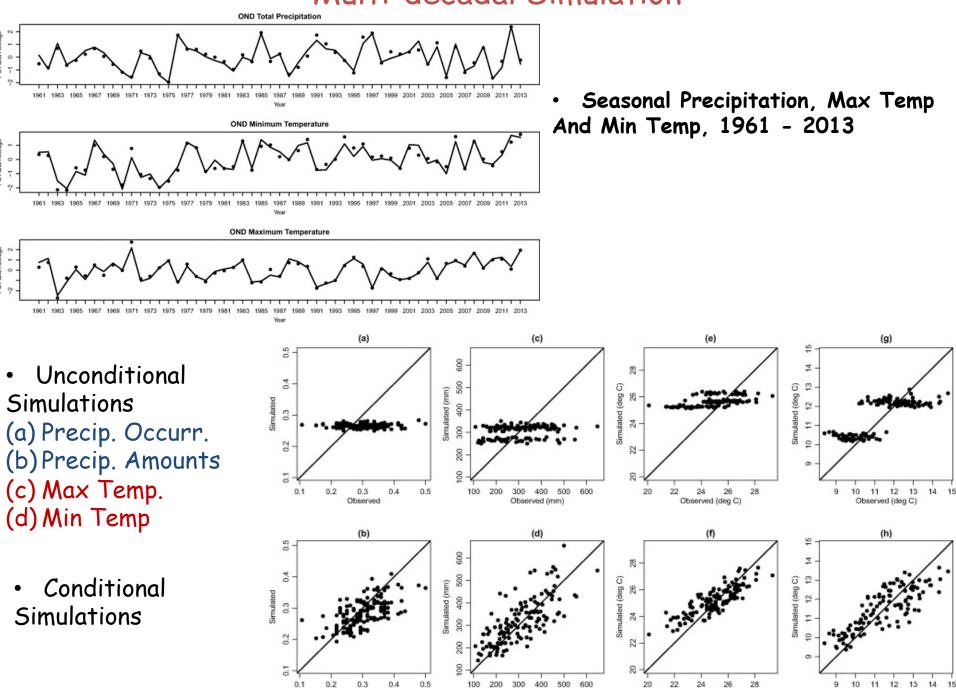


Differences in 95% ensemble spread (unconditional minus conditional):



- Unconditional simulation shows
 - A wet bias relative to conditional
 - A cool bias in Max temperature

Multi-decadal Simulation



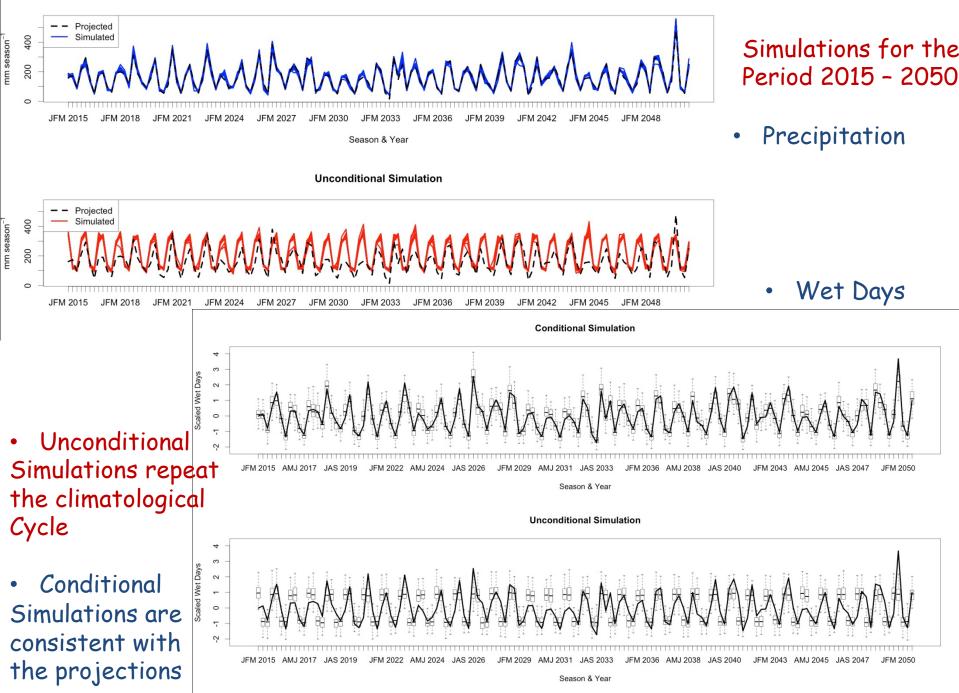
Observed (mm)

Observed

Observed (deg C)

Observed (deg C)

Conditional Simulation



Space-Time Modeling of Extremes Bayesian Hierarchical Model

Bracken et al., 2016, WRF

Bayesian and Extreme Values

Bayesian Hierarchical Model

In a hierarchical Bayesian model, expand terms using conditional distributions where $\theta = (\theta_1, \theta_2)$:

 $\underbrace{p(\theta | y)}_{\text{Posterior}} \propto \underbrace{p(y | \theta_1)}_{\text{Data Likelihood Process Liklihood}} \underbrace{p(\theta_1 | \theta_2)}_{\text{Prior}} \underbrace{p(\theta_2)}_{\text{Prior}}$

Data Likelihood Relates observed data to distribution parameters

Process Likelihood Relates distribution parameters of the to each other

Statistics of Extremes

Given daily data, if we select the maximum value in each year, those data follow a generalized extreme value (GEV) distribution:

$$\begin{aligned} \operatorname{GEV}(y;\mu,\sigma,\xi) &= \frac{1}{\sigma} b^{(-1/\xi)-1} \exp\left\{-b^{-1/\xi}\right\} \\ b &= 1 + \xi \left(\frac{x-\mu}{\sigma}\right), \ \mu: \ \text{Location}, \ \sigma: \ \text{Scale}, \ \xi: \ \text{Shape}. \end{aligned}$$

Can model

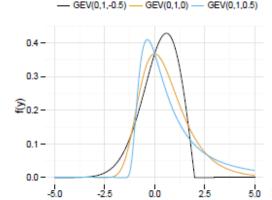
- Sea Level
- Precipitation
- Streamflow

Bracken et al., 2016, WRR

Return Level (quantile function):

$$z_r = \mu + \frac{\sigma}{\xi} [(-\log(1-1/r))^{-\xi} - 1]$$

Where r is the return period in years (100 years for example).



Data for Modeling

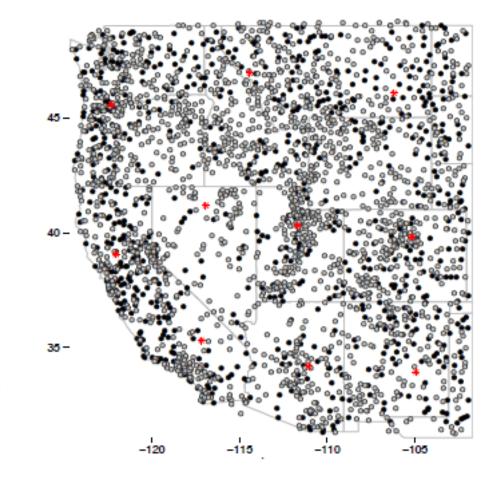
Precipitation Data

Global Historical Climatology Network (GHCN), daily total precip data

- ~2500 stations with near complete data from 1948-2013
- 3 day aggregation window
- Fall maxima

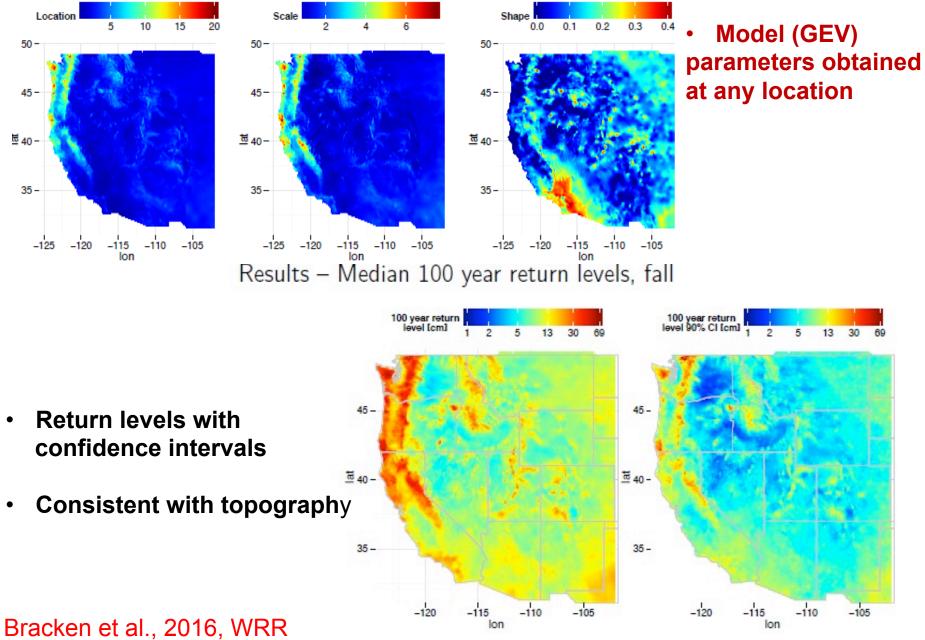
Very large region/dataset for typical Bayesian spatial model

- Complete
- Incomplete
- * Knot



Bracken et al., 2016, WRR

Results – Median GEV parameters, fall



Multivariate Nonstationary Extremes – Precipitation – Flow – Reservoir Level

Bracken et al., 2017, in review WRR

Motivation

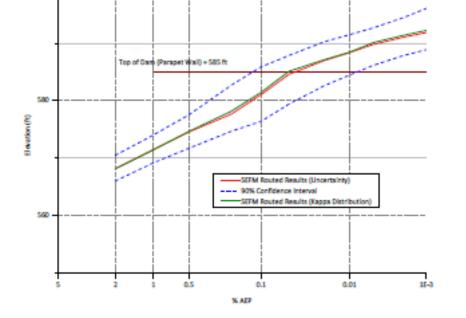
- Frequency curves for precipitation, flow and reservoir elevation are Estimated independently, making uncertainty propagation difficult
- Return levels are developed under assumption of temporal stationarity
- Need for modeling extremes with temporal nonstationarity

RECLAMATION Managing Water in the West

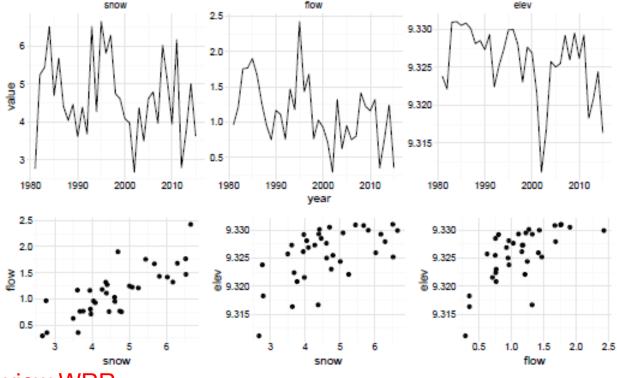
Friant Dam Hydrologic Hazard for Issue Evaluation

Central Valley Project, CA Mid-Paolflo Region

U.S. Department of the interfor Burnes of Reclamation



Application - Taylor Park Dam, Colorado



Bracken et al., 2017, in review WRR

Reservoir frequency analysis

Taylor Park Reservoir, Colorado, USA.

▶ 35 years of annual 1-day flow maxima:

 $z(t) \sim GEV(\mu_z(t), \sigma_z, \xi_z)$

35 years of annual 1-day peak SWE (GHCNd):

 $y(t) \sim GEV(\mu_y(t), \sigma_y, \xi_y)$

35 years of annual 1-day peak reservoir elevation:

 $h(t) \sim GEV(\mu_h(t), \sigma_h, \xi_h)$

Covariates:

Model

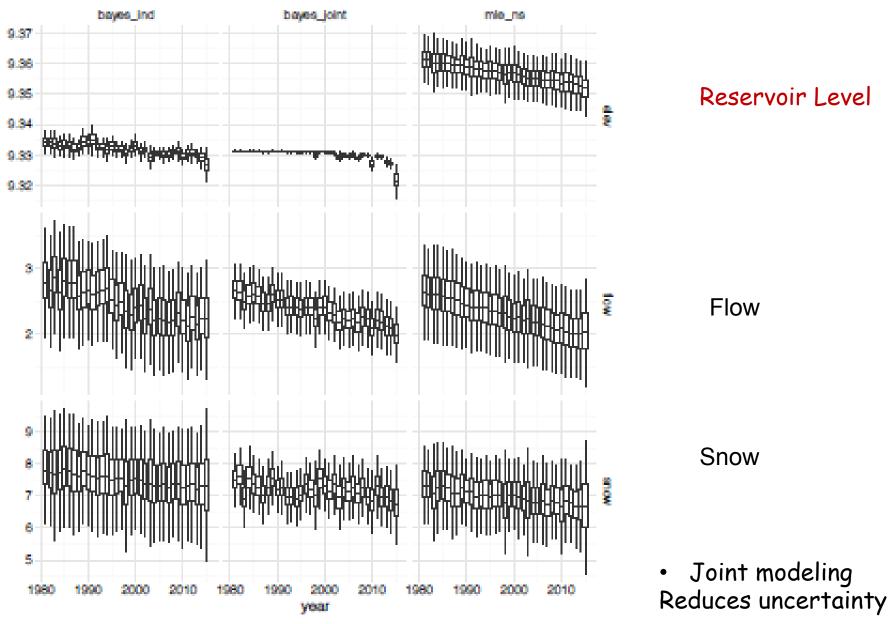
- Incorporate temporal nonstationarity

$$\begin{aligned} (y(t), z(t), h(t)) &\sim C_g(\Sigma; \{\mu_y(t), \sigma_y, \xi_y, \mu_z(t), \sigma_z, \xi_z, \mu_h(t), \sigma_h, \xi_h\}) \\ y(t) &\sim GEV(\mu_y(t), \sigma_y, \xi_y) \\ z(t) &\sim GEV(\mu_z(t), \sigma_z, \xi_z) \\ h(t) &\sim GEV(\mu_h(t), \sigma_h, \xi_h) \\ \mu_y(t) &= \mu_{y0} + x(t)^T \beta_y \\ \mu_z(t) &= \mu_{z0} + x(t)^T \beta_z \\ w \text{ WRR} \qquad \mu_h(t) &= a - \exp(-b\mu_z(t)) \end{aligned}$$

Bracken et al., 2017, in review WRR

where $x(t)^T$ is a vector of climate covariates.

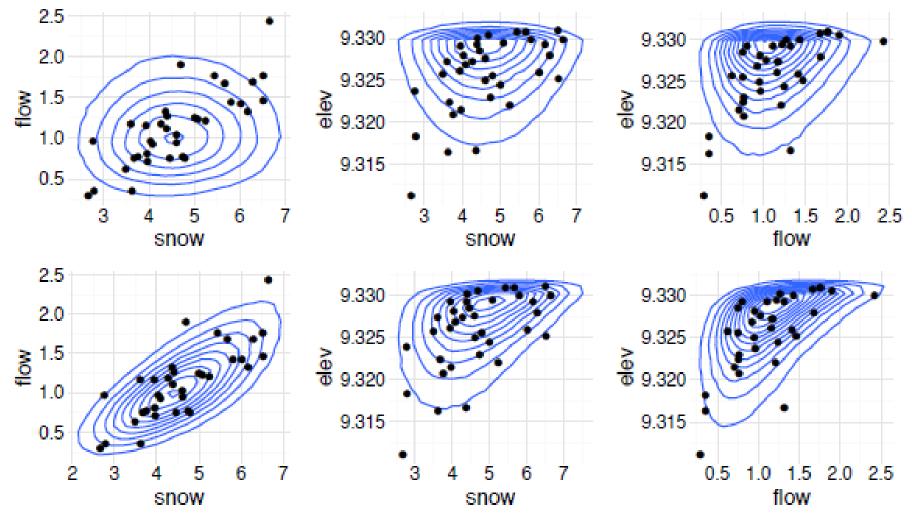
Results - Nonstationary 100-year Return Level



Bracken et al., 2017, in review WRR

Results - Joint Relationships

Modeling variables separately



Joint Modeling

Bracken et al., 2017, in review WRR

 Variable correlations are very well captured with joint modeling, compared to independent modeling

Summary and Parting Thoughts

- Large scale climate features modulate moisture availability and transport to produce climate extremes in the Western U.S
 - Significant seasonal signatures in sources
 - ENSO effect on frequency of extremes
- Bayesian Hierarchical Modeling offers powerful and general framework for modeling extremes with robust quantification of uncertainty
 - In Space
 - Incorporate Temporal nonstationarity
 - Of several variables jointly (Multivariate Extremes)
 - And provide various return levels
- Climate Change projections can be incorporated as covariates
- Effective infrastructure management and societal responses for mitigating impacts of extremes are enabled

Summary and Parting Thoughts

- Weather generators offer attractive way to simulate space-time ensembles of daily weather
- Covariates are easily incorporated
 - Seasonal average precipitation, temperature etc.
 - Other covariates can also be used weather types, NWS forecasts etc.
 - Enabling to simulate weather sequences conditioned on *Seasonal* and *Multidecadal Climate Projections*
- Can be used as an effective 'Downscaling' technique
- Easily coupled with hydrologic models to provide ensemble streamflow forecasts; capture forcing uncertainties
 - Can significantly improve upon ESP

Acknowledgements

•Bracken, C., B. Rajagopalan, W. Kleiber and L. Cheng and S. Gangopadhyay, Efficient Bayesian hierarchical modeling of spatial precipitation extremes over a large Domain, Water Resources Research, 52(8), 6643-6655, 2016

•Bracken, C., B. Rajagopalan, M. Alexander and S. Gangopadhyay, Spatial variability of seasonal extreme precipitation in the Western United States, Journal of Geophysical Research – Atmospheres, 12(10), 4522-4533, 2015

•Bracken, C., K. Holman, B. Rajagopalan and H. Moradkhani, A Bayesian hierarchical approach to multivariate nonstationary hydrologic frequency analysis, Water Resources Research, (in review, WRR), 2017

•Verdin, A., B. Rajagopalan, W. Kleiber, and R.W. Katz, 2015: "Coupled stochastic weather generation using spatial and generalized linear models." Stochastic Environmental Research and Risk Assessment, 29, 347-356

•Verdin, A., B. Rajagopalan, W. Kleiber , G. Podesta and F. Bert, 2017, "A conditional stochastic weather generator for seasonal to multi-decadal simulations." Journal of Hydrology, <u>https://doi.org/10.1016/j.jhydrol.2015.12.036</u>

•Mendoza, P., B. Rajagopalan, M. P. Clark, K. Ikeda and R. Rasmussen, 2015, Statistical postprocessing of high-resolution regional climate model output, Monthly Weather Review, doi: 10.1175/MWR-D-14-00159.1

Co-authors / Acknowledgements

- Pablo Mendoza
- Univ. of Chile
- Cameron Bracken
- Bonneville Power Administration
- Andrew Verdin USBR, Denver
- Will Kleiber University of Colorado, Boulder, CO
- Andy Wood
- Rick Katz

- Guillermo Podesta
- Federico Bert

- NCAR
- NCAR
- U. of Miami
- U. of Buenos Aires
- Contact: <u>balajir@Colorado.edu</u>