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The	
  Atlantic	
  Multidecadal Variability	
  (AMV)	
  is	
  the	
  dominant	
  mode	
  of	
  
climate	
  variability	
  in	
  the	
  North	
  Atlantic	
  and	
  affects	
  temperature,	
  

rainfall	
  and	
  hurricanes	
  on	
  decadal	
  timescales	
  and	
  longer

2. Data and Methodology
2.1. Observations

We use the Extended Reconstructed SST, version 3b (ERSSTv3b) reanalysis [Smith et al., 2008] for SST, and the
National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis [Kalnay
et al., 1996] for sea level pressure (SLP) and surface winds for the years 1950–2014, while radiative fluxes
are from the Clouds and Earth's Radiation Energy System (CERES) Energy and Balance Filled, edition 2.8
(EBAF_Ed2.8) data set for the years 2001–2014 [Loeb et al., 2009].

We analyze total cloud cover from ship-based observations in the Extended Edited Cloud Reports Archive
(EECRA) for the years 1954–2008. This archive is on a 10°× 10° grid with units of percent [Hahn and
Warren, 2009; Eastman et al., 2011]. We mask out data where there are less than 25 observations in each grid
box per season, as recommended by Eastman et al. [2011]. The EECRA data set is affected by a spurious posi-
tive trend of unknown origin, which is coherent across all latitudes. We correct this bias by subtracting the
global mean cloud cover for each year. Previous studies have shown that once this bias is taken into account,
cloud observations are consistent with other satellite products [Bellomo et al., 2014] and meteorological

Figure 1. Regressions on the NASST index (SST averaged 0°–60°N, 80°W–0°): (a) Regressions of SST (shaded), SLP (contours), and surface winds (vectors) for the years
1950–2014. Contours range from !4 hPa to 4 hPa with intervals of 0.2 hPa. (b) Regression of total cloud cover (shaded) from EECRA and climatological mean
(contours, units of %) for the years 1954–2008. (c and d) Same as Figure 1a and 1b but filtered with at 10 year low-pass Lanczos filter. Units for regressions are of K
(SST), hPa (SLP), ms!1 (surface winds), and % (total cloud cover) per K!1 of the NASST index.
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(Fig. 1B), with a pattern correlation of 0.87 (Table 2).
Furthermore, the magnitude of the AMO index
variance is similar in themultimodel mean of fully
coupled (0.053) and slab-ocean (0.058) models
(Table 1), which compares with the 0.051 mean
of the three observational data sets. (methods).
These results are unchanged if we isolate only
low-frequency variability in the AMO index
(fig. S1).
Whereas conventional wisdom is that interac-

tive ocean circulation is important in generat-
ing decadal to multidecadal time scale climate
variability, the spectral characteristics of the slab-
ocean and fully coupled models are nearly in-

distinguishable. Figure 2A shows that the spectra
of the multimodel mean preindustrial slab-ocean
simulations are essentially the same as those of
the fully coupled models. For periods longer than
10 years (beyond the El Niño/Southern Oscillation
band of 2 to 7 years), both resemble a red noise
process, suggesting that there is nothing dis-
tinctive about decadal and multidecadal varia-
bility in these models. The same is true of the
later-generation CMIP5 models (Fig. 2B). It may
be objected that individual fully coupledmodels
have low frequency spectral peaks that are aver-
aged out in the ensemblemean. However, Fig. 3,
which shows the spectra of the North Atlantic

SST index for individual models, makes it clear
that this is not the case (Fig. 3 includes all the
fully coupledmodels that have a respective slab-
ocean simulation of at least 70 years in length;
Table 1). The only fully coupled model that pro-
duces variability at decadal or longer time scales
that is significantly greater than in the slab-ocean
version is theGFDL_CM2_1model. The enhanced
quasidecadal variability in the fully coupled ver-
sion of this model is mainly in the sub-polar gyre
(fig. S2), which suggests that it is tied to the ocean
circulation, but it is not clear whether it is en-
hanced by the AMOC or by the upper ocean sub-
polar gyre circulation. Three of the fully coupled
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Observations: SST(K), SLP(hPa), winds(ms-1) 

Observations: SST(K) Slab-ocean models: SST(K), SLP(hPa), winds(ms-1) 

Fully coupled models: SST(K), SLP(hPa), winds(ms-1) 

Fig. 1. Observations and model simulation of the AMO. (A, B, and D) Regres-
sion of SST (shaded), SLP (contours), and surface winds (vectors) on the stan-
dardizedAMO index (0° to 60°N, 80°W to0°). SLPcontours range from–1.8 hPa to
1.8 hPa,with intervals of 0.1 hPa. (A) Observations. (B) Multimodel mean of CMIP3
preindustrial control fully coupled models. (D) Multimodel mean of CMIP3 pre-
industrial control slab-oceanmodels.Values are of K, hPa, and m s−1 per unit of stan-
dard deviation of the AMO index. (C) Observations. Time series of annual mean
anomalies of the standardized AMO index (colored bars) with a 10-year running average superimposed (black line).The observed SST is from ERSSTv3b,whereas
surfacewinds and SLPare from theNCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis. All fields
are detrended.
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What	
  drives	
  the	
  multidecadal
departures	
  of	
  the	
  AMV?

Internal	
  climate	
  variability

• The	
  North	
  Atlantic	
  Oscillation	
  
(NAO)	
  drives	
  changes	
  in	
  the	
  
AMOC,	
  which	
  then	
  affects	
  SST	
  
(e.g.,	
  Delworth et	
  al.	
  2017,	
  Peings et	
  al.	
  2016)

• The	
  NAO	
  drives	
  changes	
  in	
  
surface	
  heat	
  fluxes	
  which	
  are	
  
then	
  stored	
  into	
  the	
  oceanic	
  
mixed	
  layer	
  (e.g.,	
  Clement	
  et	
  al.	
  2015,	
  
Seager et	
  al.	
  2000)

External	
  radiative	
  forcings

• Anthropogenic	
  (e.g.	
  
aerosols	
  and	
  GHG)	
  or	
  
natural	
  (e.g.	
  volcanoes)	
  
forcings (e.g.,	
  Murphy	
  et	
  al.	
  2017,	
  
Booth	
  et	
  al.	
  2012,	
  Ottera et	
  al.	
  2010)



ØObservations:	
  ERSSTv4

Ø CESM	
  Large	
  Ensemble,	
  1920-­‐2005,	
  42	
  historical	
  
ensemble	
  members	
  with	
  prescribed	
  historical	
  
forcings,	
  initialized	
  from	
  different	
  atmospheric	
  initial	
  
conditions
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  mean	
  (“de-­‐meaned”)
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Figures

Fig. 1: (a) and (b): Time series of the unfiltered detrended NASST index (SST averaged over the North 
Atlantic: 0-60N,80W-0) in observations (black), ensemble members (thin red lines), ensemble mean 
(thick red line) for the years (a) Last Millennium Ensemble (1854-2005) and (b) Large Ensemble 
(1920-2005). All data are standardized. (c) and (d): Correlation coefficients and PDF between observed
AMV index (computed as the detrended 20 year low-pass filtered NASST index) and ensemble 
members. Red=historical, Red filled=ens mean, Blue=de-meaned (historical minus ensemble mean), 
Green=picntrl, Black=random numbers.
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Fig. 2: Spatial pattern of forced variance divided by total variance of SST. Forced variance is the 
variance of the ensemble mean SST at each grid box. Total variance is the average of the SST 
variances across all ensemble members. All data are detrended and filtered with a 20 year low-pass 
Lanczos filter. (a) Last Millennium Ensemble (1854-2005), (b) Large Ensemble (1920-2005). The 
insets in the the lower right in both panels indicate the forced to total variance averaged in the North 
Atlantic basin.
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Fig. 1: (a) and (b): Time series of the unfiltered detrended NASST index (SST averaged over the North 
Atlantic: 0-60N,80W-0) in observations (black), ensemble members (thin red lines), ensemble mean 
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Fig. 3: Power spectra of unfiltered and detrended NASST index. Black line is observations. Red line is 

the ensemble mean (forced component). Red envelope spans the historical ensemble members 

(forced+internal variability). Light blue envelopes spans de-meaned ensemble members (internal 

variability). (a) Last Millennium Ensemble (1854-2005), (b) Large Ensemble (1920-2005).
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Figure 3a shows that the range in corre-
lations and probabilities in the CESM-LE
is captured in our analysis of the CMIP5
models. In summary, although it is pos-
sible in some models for the PI to corre-
late as well or better with the OBS than
the HIST simulation, the model results
show that this is unlikely, especially for
models whose HIST simulations are
among the best.

4. Discussion and Conclusions

In this study, we assess the contribu-
tions of internal variability and external
forcing in driving the observed AMO
variability over the historical period
using a suite of climate model simula-
tions from the CMIP5 archive and the
CESM Large Ensemble. The AMO index
in the PI simulations is generated via
interactions internal to the ocean-
atmosphere system, while in the histor-
ical simulations (HIST) natural and
anthropogenic forcing also contributes
to the AMO variability. We find that
the historically forced simulations in
the majority of models produce an
AMO that is significantly correlated
with the observed AMO and explains
up to 56% of the observed variance.
The majority of CMIP5 models (31 out
of 41) show that the probability of
rpi_lp being greater or equal to rhist_lp
ranges from 0% to less than 3%. The
chance that all of these HIST simula-
tions perform this way by chance is
extremely small. Thus, CMIP5 models
show that external forcing is critical in
setting the timing and phase of the
AMO. Similar conclusions are found
with the CESM-LE. In support to our
conclusions, proxy reconstructions
show multidecadal variability in North
Atlantic climate throughout at least
the last five centuries [Delworth and

Mann, 2000; Gray et al., 2004], with both proxy and modeling studies suggesting a role for external solar
and volcanic forcing since at least 1775 A.D. [Otterå et al., 2010; Knudsen et al., 2014; Otto-Bliesner et al., 2016].

While external forcing increases the variance of the AMO, there remains a significant portion of the observed
variance that is unexplained by HIST simulations. Previous studies have interpreted differences between the
observed AMO and that in historically forced simulations as largely due to internal variability [e.g., Ting et al.,
2009; Zhang et al., 2012]. Some of the differences between these interpretations may be explained by the
differences between the CMIP3 and CMIP5 simulations [Zhang and Wang, 2013]. However, there is also the
possibility that either the model response to the forcing is incorrect or the forcing itself is incorrect.

Figure 3. (a) Probability (in %) that the unforced CMIP5 PI simulation per-
forms as well or better than the corresponding forced CMIP5 HIST simu-
lation for the AMO. Overlaid in black dots are the results from the CESM-LE.
The magenta line shows the cumulative distribution function (CDF)
derived from red noise. (b.) Scatterplot showing the rhist_lp in all 41 CMIP5
HIST simulations (20 models have multiple ensemble members) and the
41-member ensemble from CESM-LE. The scatterplot is color coded to
match the model’s color in Figure 3a. The colored open circles are each
ensemble member’s correlation, the filled in colored circles are the corre-
lation of the ensemble mean, and the black asterisk is the mean correla-
tion of all 140 year segments of eachmodel’s PI simulation. Black error bars
represent ±2 times the standard deviation (2σ) of the rpi_lp.
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OBS AMO. The distribution of correla-
tion coefficients from red noise forcing
is Gaussian with a zero mean and a
standard deviation of 0.30. The 90%,
98%, and 99% confidence levels for
correlations are 0.33, 0.50, and 0.55,
respectively. Using the lag = 1 autocor-
relation of the observed LP-filtered
and detrended AMO time series
(r= 0.95) results in slightly higher
confidence levels for our correlation
coefficients (0.39 (90%), 0.58 (98%),
and 0.64 (99%)). We note that we do
not expect the uninitialized simulations
to have internal variability that is in
phase with the observations, except
by random chance.

Several models in the CMIP5 archive
have multiple ensemble members for
the HIST simulations. In our analysis,
we compare the correlation and var-
iance of individual ensemble members
and the ensemble mean with the
observations and with the PI models.

3. Results
3.1. Variance

Table 1 compares the correlation and
variance between the simulated PI
and HIST AMO and is ordered from
highest to lowest rhist_lp values based
on ensemble member 1. Figure 1a
shows the variance in the PI simulation
(PIvar) compared to the first ensemble
member of each HIST simulation
(HISTvar) listed in Table 1. There is a
large spread in the OBS AMO variance
over the period 1865–2005 (magenta
lines in Figure 1a). The ERSSTv4 var-
iance (0.042) is much higher than the
variance estimated in the earlier ver-
sion, ERSSTv3b (0.031), and in COBE
SSTv2 (0.033). The CMIP5 HIST var-
iances range from 0.008 to 0.047. The

HIST variance in 39 of 41 models exceeds the PI variance (i.e., they lie above the 1-1 line in Figure 1a). Here
PIvar is calculated over the length of the PI simulation. The CMIP5 PI simulations range in length from a cou-
ple centuries to a few millennia. Figure 1b shows the mean variance of all 141 year segments of each PI AMO
(black asterisk), and error bars represent the ±2 times the standard deviation (2σ) of the PI variance. In most
models the 2σ range is small. However, there are a fewmodels that show large changes in variability through-
out their PI simulations (CNRM-CM5-2, GFDL-ESM2G, HadGEM2-AO, HadGEM2-ES, and IPSL-CM5A-LR). In all
but one model, CNRM-CM5-2, the mean of all 141 year segments is identical or similar to the variance calcu-
lated over the entire length of the PI simulation. In the CNRM-CM5-2 model, the PI AMO shows centennial-
scale behavior and using the entire length of the simulation results in a variance of 0.09, well outside the

Figure 1. (a) Comparison of the CMIP5 PI AMO variance and the ensemble
member 1 CMIP5 HIST AMO variance using a fourth-order 10 year
Butterworth low-pass filter for the period 1865–2005. The solid magenta
line is the variance from the ERSSTv4 data set (0.042), and in dashed
magenta is the variance from the COBE data set (0.033), and in black is the
one-to-one line. (b.) Scatterplot showing the variance in the all 41 CMIP5
HIST simulations (20 models have multiple ensemble members) and the
41-member ensemble from CESM-LE. The scatterplot is color coded to
match the model’s color in Figure 1a. The colored open circles are each
ensemble member’s variance, the filled in colored circles are the variance
of the ensemble mean, and the black asterisk is the mean variance of all
140 year segments of eachmodel’s PI simulation. Black error bars represent
±2 times the standard deviation (2σ) of the PI variance. The magenta lines
are the same as in Figure 1a.
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Summary

ØMost	
  previous	
  work	
  suggest	
  that	
  multidecadal variability	
  in	
  the	
  
North	
  Atlantic	
  is	
  primarily	
  driven	
  by	
  internal	
  variability.	
  

ØHere,	
  using	
  observations	
  and	
  a	
  large	
  ensemble	
  to	
  isolate	
  external	
  
forcing	
  in	
  the	
  CESM	
  model,	
  we	
  claim	
  that	
  phase	
  changes	
  of	
  the	
  
AMV	
  and	
  a	
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  of	
  its	
  variance	
  may	
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radiative	
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  is	
  that	
  predictive	
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  increases	
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Thank	
  you!
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