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Predictability	of	North	Atlan3c	SST	and	ocean	heat	content	
•  North	Atlan3c	is	a	region	of	high	predictability	of	sea	surface	temperatures	and	ocean	

heat	content,	as	seen	by:	

•  ini3alized	predic3ons	(e.g.,	,Smith	et	al.,	2007;	Keenlyside	et	al.	2008;	Yeager	et	al.,	2012)		

•  sta3s3cal	es3mates	of	predictability	(e.g.,	Branstator	et	al.,	2012;	Branstator	and	Teng,	
2012;		DelSole	et	al.,	2013)	

•  Degree	of	predictability	varies	substan3ally	between	models.	

•  Branstator	et	al.,	2012	find	that	predictability	of	upper	ocean	heat	content	varies	
widely	amongst	CMIP5	models,	par3cularly	in	the	North	Atlan3c.		

•  DelSole	et	al.,	2013	iden3fy	common	predictable	components	in	CMIP5	models.	

This	work:	calculate	sta3s3cal	measures	of	predictability	3mescales	from	ocean	data	
products	and	CMIP5	models.		

1.  What	por3on	of	geographic	varia3ons	in	predictability	3mescales	can	be	explained	by	
varia3ons	in	climatological	winter3me	mixed	layer	depths?			

2.  How	realis3c	are	predictability	3mescales	in	CMIP5	models?	

FOCUS	OF	THIS	TALK:	predictability	3mescales	in	gridded	observa3onal	products	and	
ocean	reanalysis	

(talk	to	me	or	see	Fall	2016	NOAA	webinar	for	discussion	of	CMIP5	models).		



Predictability	of	ocean	heat	content	
Measure	of	ocean	heat	content:	heat	contained	in	the	layer	between	the	surface	
and	the	maximum	climatological	(i.e.,	winter3me)	mixed	layer	depth	(D).		
	
	
	

•  Layer	of	the	ocean	that	interacts	with	the	atmosphere	seasonally.	
•  H	covaries	with	SST	on	interannual	3mescales	(Buckley	et	al.,	2014).	
•  Meaningful	heat	budgets	can	be	computed	for	this	layer	(Buckley	et	al.,	
2014,	2015).	

	
Can	geographic	varia3ons	of	predictability	of	H	be	related	to	varia3ons	in	D,	
i.e.,	higher	predictability	where	winter3me	mixed	layers	are	deeper?		
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Simple	sta3s3cal	measures	of	predictability	

1)  e-folding	3mescale:		
	
	
2)  Decorrela3on	3me:																																									
							(DelSole,	2001)	
	
	
3)  Decorrela3on	3me:	
							(DelSole,	2001)	
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•  T1=T2=τd	for	exponen3al	decay.	
•  In	other	cases,	the	three	measures	may	differ.		

	
	
	
	
	
	
	
Reemergence:	T1,	T2>	τd	 	 	 	 	Periodic	behavior:	T2>	T1,	τd		
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FIG. 2. Seasonal SST anomaly autocorrelation (thick line) starting
from Mar at (top) 498N, 358W and (bottom) 358N, 378W, with an
exponential fit based on the first 5 lags (dashed) and the recurrent
peak (continuous). Dotted lines represent the one-sided 10% signif-
icance level for zero correlation.

that at a few locations, significant recurrent correlations
were found when using April or May as references in-
stead of March, possibly because only SST anomalies
created later in the spring can reemerge in the next
winter (Alexander et al. 1999). However, it was difficult
to make a clear distinction between these sparse and
rather weak signatures, and noise. As March led to the
most coherent results, it was used as single reference
month.
The short-term e-folding timescale of the late winter

SST anomalies can be estimated by fitting the seasonal
autocorrelation with an exponential, using the first few
lags (we use lag 0–5). A least squares fit yields an e-
folding timescale t0 of 4 months (Fig. 2, top) and 2
months (Fig. 2, bottom). To estimate the long-term e-
folding scale of the winter anomalies (thereafter win-
tertime persistence, or t1), we simply fit the exponential
to the maximum correlation found during the following
winter, taken between lag 8 (November) and 12 (March),
which allows for the geographical differences in timing
of the reemergence. This yields an e-folding timescale

t1 of 12 months (Fig. 2, top) and 6 months (Fig. 2,
bottom).
Because of the limited sampling, the estimates of the

wintertime persistence are biased high, in particular if
there is no reemergence, as in Fig. 2 (bottom). Numer-
ical simulations were used to estimate the 10% signif-
icant level for the estimated wintertime persistence t1
as a function of t0, based on the null hypothesis that
there is no reemergence. The model used for these sim-
ulations is Frankignoul and Hasselmann’s (1977) where
the SST anomaly is represented by a first-order Markov
process T(t) with an e-folding timescale t0:

21/t0T(t) 5 e T(t 2 1) 1 F(t). (1)
Here, F(t) is a Gaussian white noise with zero mean
that coarsely simulates 3-day averages of the atmo-
spheric forcing. The iteration was made with t0 ranging
from 1 to 20 months, for 6000 3-day units, and 10-unit
averages considered, thereby simulating 50 yr of month-
ly SST anomaly data. The maximum seasonal autocor-
relation g found at lag l (l ranging between 8 and 12
months) was then used to estimate the wintertime e-
folding timescale t1 by 2l/log(g). This was repeated
1000 times for each t0, providing an histogram of the
estimated wintertime persistence t1 under the null hy-
pothesis of no recurrence from one winter to the next
(see Fig. 3). The results yield as critical value at the
10% level t1 5 9 and 8 months for t0 5 4 and 2 months,
respectively. As the estimated t1 is larger than the crit-
ical value in Fig. 2 (top), but smaller in Fig. 2 (bottom),
the calculation confirms that only the former location
shows a significant recurrence. Figure 3 also shows the
bias, given by the difference between t1 and t0. The
distribution is not symmetric, because of the exponential
relation between e-folding scale and autocorrelation.
The bias is small (less than 1 or 2 months) for t0 $ 4
months, but larger for smaller t0, reaching 3 months for
t0 5 2 months.
Note that smaller wintertime persistence would be

found by least squares fitting the exponential to the sea-
sonal autocorrelation in a fixed range of lags (e.g., be-
tween lag 9 and 11), but this procedure would be biased
low, and the range of lags should take into account the
geographical variability of the reemergence period or
the timing of the mixed-layer maximum, leading to te-
dious classification.
Figure 4 (top) shows the short-term e-folding time-

scale at each grid point of the domain. The e-folding
scale t0 averages to 3 months and generally does not
exceed 6 months. It is generally within a month or two
of the persistence that one would estimate from a stan-
dard autocorrelation function based on all months. In
the part of the domain where a recurrent peak could be
visually identified, the wintertime e-folding timescale
t1 averages to 12 months (Fig. 4, bottom). Areas where
no recurrent peak could be detected have been whitened.
They closely correspond to the 10% limit (heavy black
line) estimated from numerical simulations. Although

years	

CM3	(54°W,	60°N)	
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Integrate	temperature	over	D		è	heat	content		(H)	

IF	HAVE	LONG	TIMESERIES	(e.g.,	CMIP5	models)	

•  Calculate	sample	autocorrela3on	func3on	(ρτ)	at	each	gridpoint.	

•  Sum	ρτ	and	ρτ2		from	lag	0	to	lag	τ*	to	get	T1	and	T2	,	respec3vely.	

	τd<<τ*<<tl	(tl	is	length	of	3me	series)		

	

IF	HAVE	SHORT	TIMESERIES	(e.g.,	observa3onally-based	products)	

•  The	sample	autocorrela3on	func3on	will	be	noisy.	

•  Instead	fit	an	autoregressive	(AR)	model	at	each	gridpoint	and	use	AR	
parameters	to	calculate	theore3cal	autocorrela3on	func3on	(ρτ*)	

•  Integrate	ρτ*  and	(ρτ*)2	to	find	T1	and	T2,	respec3vely.	
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TODAY:	Focus	is	on	es3ma3ng	T1	and	T2	in	two	data-based	products	

•  Ishii,	gridded	observa3onal	product	(1945—2012)	

•  GFDL	Ensemble	Coupled	Data	Assimila3on	(ECDA	v3.1,	1961—2012)	

	

DETAILS:	

•  Restrict	both	to	common	period,	1961—2012.	

•  Use	yearly	averages	of	H		
	(results	are	similar	for	winter3me	averages).	

•  Detrend	prior	to	compu3ng	AR	fits.	

•  Tried		AR	order	1—3	and	found	likle	sensi3vity	to	AR	order	
par3cularly	for	AR	order	greater	than	2.	

•  Present	results	for	AR2.	

	



Maximum	Climatological	Mixed	Layer	Depth	(D)	

	
	

Ishii	(1961—2012) 	 	 			ECDA	v3.1	(1961—2012) 	 		Argo	MLD	climatology		
	 	 	 	 	 	 	 	 	 	 	 	 		(2000—2017)		

(Holte	and	Talley)	



Predictability	of	H	in	Ishii	

•  Longest	predictability	3mescales	are	in	the	subpolar	gyre.	
•  T1	and	T2	are	very	similar	(periodic	variability	not	playing	a	role).	
•  For	all	points	in	North	Atlan3c	correla3on	between	T1,	T2	is	0.98.	

Black	contours	show	D	at	levels	of	500,	1000,	1500	m	



Ishii:	Predictability	of	H	in	the	North	Atlan3c		

•  ~60%	of	spa3al	variance	of	
predictability	3mescales	
explained	by	varia3ons	in	D.	

	
•  Slope	of	fit	suggests	a	
damping	parameter	~30	W	
m-2	K-1	in	accord	with	
es3mates	in	literature	(e.g.,	
Frankignoul,	1981).	

	
•  More	outliers	with	higher-
than-expected	predictability	
(black	points)	than	lower-
than-expected	predictability	
(green	points).	
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Outliers:	predictability	3mescale	not	explained	by	D	

•  Most	outliers	are	in	the	subpolar	gyre.	
•  Most	outliers	have	higher-than-expected	predictability.	
•  Large	region	higher-than-expected	predictability	just	south	of	very	deep	D.	



Predictability	of	H	in	ECDA	v3.1	

•  Longest	predictability	3mescales	are	in	the	subpolar	gyre.	
•  T1	and	T2	are	very	similar	(periodic	variability	not	playing	a	role).	
•  For	all	points	in	North	Atlan3c	correla3on	between	T1	and	T2	is	0.98.	

Black	contours	show	D	at	levels	of	500,	1000	m	



ECDA:	Predictability	of	H	in	North	Atlan3c	

								

•  ~70%	of	spa3al	variance	of	
predictability	3mescales	
explained	by	varia3ons	in	D.	

	
•  Slope	of	fit	suggests	a	
damping	parameter	~20	W	
m-2	K-1	in	accord	with	
es3mates	in	literature	(e.g.,	
Frankignoul,	1981).	

•  More	outliers	with	higher-
than-expected	predictability	
(black	points)	than	lower-
than-expected.	predictability	
(green	points).	
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Outliers:	predictability	3mescale	not	explained	by	D	

•  Most	outliers	are	in	the	subpolar	gyre.	
•  Most	outliers	have	higher-than-expected	predictability.	
•  In	regions	with	large	gradients	in	D,	predictability	doesn’t	follow	local	D.	



Conclusions	&	Future	Work	

•  Introduced	diagnos3c	H:	heat	content	in	the	layer	between	the	surface	and	
the	climatological	winter3me	mixed	layer	depth.	

•  H	is	a	useful	diagnos3c	to	es3mate	ocean	predictability.	

•  Used	gridded	observa3onal	products	(e.g.	Ishii)	and	ocean	reanalyses	(e.g.	
ECDA)	to	es3mate	2	sta3s3cal	measures	of	predictability	of	H:		T1	and	T2.	

•  Predictability	3mescales	are	longest	in	the	subpolar	gyre.	
•  T1≈	T2,	sugges3ng	periodic	variability	does	not	play	a	role,	at	least	on	the	

3mescales	that	can	be	resolved	by	our	data-products	(1961—2012).				

•  Predictability		3mescales	are	related	to	the	winter3me	mixed	layer	depth,	D.		

•  ~60-70%	of	spa3al	varia3ons	in	T1,	T2	can	be	explained	by	varia3ons	in	D.		
FUTURE	WORK	

•  Apply	to	other	gridded	observa3onal	products	and	ocean	reanalysis.	
•  	Work	to	beker	understand	regions	of	high	predictability,	where	H	does	not	

follow	D.	

•  Compare	to	CMIP5	models	to	access	their	realism.			


