Biological and physical controls on the Kuroshio Extension oxygen cycle from an array of profiling floats

Seth M. Bushinsky¹, Steven R. Emerson²

¹Atmospheric and Oceanic Sciences, Princeton University ²School of Oceanography, University of Washington

I YET NOW :

Postdoc advisor: Jorge Sarmiento¹

Motivation: Carbon uptake in the Western N. Pacific

Takahashi et al. (2009)

- Kuroshio Extension is a large carbon sink
- Biological or physical control:
 - Ayers and Lozier (2012)

 biology important, geostrophic
 divergence of DIC significant
 driver
 - Takahashi et al. (2009)
 -roughly equal biological and physical importance

Deployment of modified Argo-oxygen floats

- Designed and deployed Argo oxygen floats capable of air calibration
 - Critical for estimating the air-sea flux of oxygen
 - Goal: to constrain the impact of biological carbon export on the Kuroshio Extension carbon uptake

O₂ mass balance

KE region: strong horizontal advection and fronts

Separating float profiles by TS and location

- Simple geographic boundaries ignore seasonal movement of Kuroshio Extension
- Surface Temperature-Salinity relationships help identify and separate water masses

Separating float profiles by TS and location

- Simple geographic boundaries ignore seasonal movement of Kuroshio Extension
- Surface Temperature-Salinity relationships help identify and separate water masses

KE upper ocean gas model

modified from Bushinsky and Emerson, 2015

KE upper ocean gas model – regional view

F_H

Horizontal

Advection

AVISO Geostrophic Velocities,

Ekman transport from ASCAT

other boxes, World Ocean Atlas

- Profiles averaged along density surfaces
- Model extends below deepest wintertime mixed layers
- Annual fluxes integrated to depth of wintertime mixed layer for each year

Model Flux calculations

Term	Oxygen fluxes
F _{A-S}	Liang '13, tuned to wintertime Ocean
Gas exchange	Station Papa N ₂
F _E Entrainment/ shoaling	Float SST/Sal (de Boyer Montégut 2004) and Δ[C]/dz
F _{kz}	Deep K _z = 10 ⁻⁵ m ² s ⁻¹ ; ML K _z = 10 ₋₄ m ² s ⁻¹ ;
Diapycnal diffusion	Float measured Δ [C]/dz
F _W	Ekman pumping, calculated from ASCAT
Vertical advection	winds
F _H	AVISO Geostrophic Velocities, Ekman
Horizontal	transport from ASCAT winds
Advection	

Dominant model term: gas exchange

		mol O ₂ m ⁻² yr ⁻¹	
Mean flux	North	Central	South
dO2/dt	0.2	0.5	-0.5
F _{A-S}	3.5	7.1	-1.7
F _{kz}	-0.3	-0.2	-0.3
F _H	0.6	-0.2	-0.2
Fw	0	0.1	-0.1
F _{resid}	-4.3	-6.4	2.3

ANCP estimates in the KE

¹Palevsky and Quay (2017), Palevsky et al. (2016)
²Fassbender et al. (2017)
³Yasanuka et al. (2013)
⁴Yang et al. (2017)
⁵Wakita et al. (2016)

	mol C m ⁻² vr^{-1}	North	Control	South
		North	Central	Juin
mol C m ⁻² yr ⁻¹	This study (integrated to base of winter ML)	~0	~0	~1.6 ± 2
	Other studies (base of WML)	0.5 ± 0.7^{1}	-	2.2 ± 0.3 ⁴ , 2.8 ± 0.5 ⁵
	Other studies (Surface/ML)	~2³	7 ± 3 ² , ~1.5 ³	-

Mode water formation in the Western North Pacific

 $hd[C]/dt = F \downarrow A - S + F \downarrow E + F \downarrow H + F \downarrow kz + FW + F \downarrow J$

North box: CMW Central box: STMW formation region

Suga et al. (2004)

Mode water formation in the Western North Pacific

Mode water formation in the Western North Pacific

Mode water formation needed to remove residual oxygen flux

	This study (Sv)	Suga et al. 2008 (Sv)
North (CMW)	6.1-6.8	~6.5
Central (STMW)	6.8-7.3	~4

KE upper ocean O₂ budget - Conclusions

- North/Central boxes: little evidence for strong biological control on air-sea exchange
- Primary driver of oxygen uptake solubility changes, air-sea exchange, removed by mode water formation
- Large area integration of float data enables interpretation of psuedolangranian profilers in a highly advective region

hd[C]/dt = FJA-S + FJE + FJH + FJkz + FW + FJJ + FMW