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WARM ARCTIC/COLD CONTINENTS
IN THE HEADLINES haly westher: Heavy snow arps

The Arctic is Sh()wing StllIlIliIlg winter Biting cold below minus 60C brings out the best
A " A in Siberian face fashion
warmth, and these scientists think they

know why Freakishly warm weather hits North Pole days before
Meet the 'Warm Arctic, Cold Continents' hypothesis. Ch riStmas
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While the North Pole warms beyond the melting November day in 111 years
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Tokyo sees first November snow in 54
years Freak weather leaves Sahara Desert

Dozens killed by Europe's coldest weather in years covered in one metre of snow -

Siberian cold front sweeps across Europe, bringing record low temperatures

. . UK snow: Severe weather sweeps across
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Bitter Cold Arctic Air Sets Dozens of Record Lows in the Midwest and Plains
Death toll rises to six in unrelenting ice storms

U.S. preps for 'dangerously' cold temperatures Snow falls in parts of Spain for the
e first time in over a century



Global Warming Trend

Land & Ocean Temperature Percentiles Jan-Dec 2016
NOAA'’s National Centers for Environmental Information

Data Source: GHCN-M version 3.3.0 & ERSST version 4.0.0
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ARCTIC AMPLIFICATION




Sea lce and Snow Cover Decline
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Annual Cycle of Arctic Temperatures
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Thinning of central Arctic from combined Submarine, ICESat,
and CryoSat-2 records

regression analysis
(a) (b) 45 (submarine record) ICEsat CS-2
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Kwok and Cunningham (2015)



Trends in Arctic Sea Ice Volume Since 2003
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Sea lce Loss and Arctic Temperatures

1) Local response to sea ice loss and causes for Arctic Amplification

Response of autumn (SON) surface temperature to observed sea ice loss

CAMS3 UM7.3 Screen et al. (2014)

Increase in surface temperature (decrease of the surface temperature inversion)
Increase in cloud cover, moisture, precipitation

Warming and increase in thickness of the lower troposphere
D



Sea lce loss and full AA

Role of SIC vs decadal ocean variability and internal variability
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Sea ice loss is not the only contributor to AA
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Extreme Weather
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Extreme Snowfall

50 Top 10 Snowstorms for Northeast US Cltles
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we 1rends in Extremes

1200
1000
800 i " I
i ] i I I I I I I
i i I I I I
1980 1982 1984 198 198 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
Geophysical events . Meteorological events . Hydrological events . Climatological events
(Earthquake, tsunami, (Storm) (Flood, mass movement) (Extreme temperature,
volcanic eruption) drought, forest fire)

Source: MunichRe



WARM ARCTIC/COLD

CONTINENTS




Arctic Amplification

DJF Surface Temperature Trends (1960-2013)
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January-October Air Temperature Anomalies
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Warm Arctic Cold Continents

Observed T, Trend Dec-Feb 1960/61-2015/16

CRU
land data
only

°C/decade
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Seasonal Trends £P Flux
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Seasonal Forecast Trends

CMIP3

Observations
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ARCTIC AMPLIFICATION AND
MID-LATITUDE WEATHER




Theories linking AA to Mid-latitude Weather

« Changes to latitudinal temperature gradient
« Changes to the Jet Stream/blocking/wave speed

« Changes to atmospheric waves:
— Planetary waves (winter)
— Synoptic scale waves (summer)

« Changes to troposphere-stratosphere coupling

« Support of these theories are conditional and
challenged by imperfect observations and models



Arctic Warmth reaches to the Stratosphere

Polar Cap GPH January-December 2016
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Warm Arctic Cold Continents

Triggers for/out of
phase with
continental

temperature
anomalies
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November 2016 Sea Ice Anomalies

Triggers for/out of
phase with continental
temperature anomalies

November 201 }! sea icéh1 con&entration anomaly

Biggest sea ice
extent anomalies are
in the Beaufort Sea
and especially in the

Sk

Barents-Kara seas - g e
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Eurasia. ~
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North America: Warmer Arctic Temperatures

Can Reinforce Wavy Jet Stream
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Francis and Vavrus 2015
Hartmann 2015

James Overland

GEFS 1-5 Day Forecast 500 mb GPH/GPH Anomaly
INIT: 00Z 02/01/17 FCST: 02/02/17 to 02/06/17

Atmospheric and
Environmental Research

http://www.aer.com/science-
research/climate-weather/
arctic-oscillation



Warm Arctic Forced Cold Signal

a ART1(PCORR=0.9) ART2 (PCORR 0.9)
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TROPOSPHERE VS.
STRATOSPHERE PATHWAY




Arctic Amplification - Jet Stream

Figure 3:

Schematic of a typical jet stream
trajectory (solid line) over North
America and the expected elongation
of ridge peaks northward (dashed line)
in response to Arctic Amplification.

Francis and Vavrus 2012
D



Arctic Amplification — Mid-latitude Weather

Arctic Amplification,
temperatures
increase

Higher geopotential
heights, weaker

westerly winds ¢

‘ Wavner jet stream,

Weather patterns
move eastward
more slowly

Extreme weather
more likely

FIG. 2. Hypothesized steps linking Arctic amplification with extreme
weather events in Northern Hemisphere midlatitudes.

Overland et al. 2015



Reduced Sea Ice Forced Cold Signal

Response of February air surface temperature to Barents-Kara sea ice anomalies

AGCM
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Honda et al. 2009

Less sea ice, warming in the Barents-Kara Seas induce a
cooling over Siberia/central Asia

Supported by, e.qg., Kim et al. 2014, Kug et al. 2015, Liu et al. 2012, Mori et al. 2014, Pethoukov and Semenov 2010



Extensive Snow Forced Cold Signal

Stratospheric Polar Vortex Weakens

Stratosphere C War;i’ng > @

Background
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Upward Energy
Flux
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cold air outbreaks
Reglonal
Perturbation Negative Arctic Oscillation
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Downward propagation of High
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displacement of jet.

High Pressure over the
Arctic and frequent
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Synthesis of Sea Ice and Snow Cover

Cohen et al. 2014 Review pa;.zer



2016 sea ice

TroposPhere

stratosphere
Troposphere

Eurasian snow cover, October 31, 2016

Initialized 00Z 10 hPa HGT/HGTa 19-Jan-2017

stratosphere
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GEFS 6-10 Day Forecast 500 mb GPH/GPH Anomaly
INIT: 00Z 11/07/16 FCST: 11/13/16 to 11/17/16

GEFS 6-10 Day Forecast T2m Anomaly
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CHALLENGES- THEORY,
OBSERVATIONS AND MODELS




Challenges with Data and Models

Short time series in observations since AA
Model deficiencies

Uncoordinated modeling studies

Biases and uncertainties in metrics for quantitative
analysis

Still more and more observational and modeling studies
argue that a changing Arctic is influencing mid-latitude

weather



Mid-latitude Weather is Complicated

POLAR VORTEX

NH CRYOSPHERE CHANGES
-Summer/Early Fall Arctic Sea Ice Loss

-Fall Eurasian Snow Cover Increase
-Late Fall/Winter Arctic Sea Ice Loss I

CHANGES IN:
NATURAL VARIABILITY
-Storm Tracks -Internal Climate Modes
ARCTIC AMPLIFICATION -Jet Stream -solar Cycle
-PIanetary Waves -Volcanic Eruptions
\
GLOBAL CLIMATE
CHANGE NH MID-LATITUDE
WEATHER
NS </

Cohen et al. 2014
I



Same sea ice forcing — different model response

Internal atmospheric variability is large

Winter

Fall

perturbed sea ice minus control ) )
(similar to 2009-1979) geopotential height

response [SON]
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a) Barents-Kara Sea b) East Sibe_riin_-Laptev Sea

c) Beauforl-gnukchi Sea
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Extreme Weather

« Extreme weather is subjective and not well defined.

« Extreme weather is predicted to increase under climate
change and AAis not needed to explain an increase in
extreme weather.

 Itis a challenge to identify which extremes may or may
not be influenced by AA.

« Still extreme weather is what the public is most
concerned about.



NATURAL VARIABILITY




Recent Cold Winters not Well Simulated

Change in CEUR SAT (°C)

Change in circulation index (no units)

Figure 3 | Relationship of changes in observed and simulated circulation
index to CEUR SAT changes. Changes from 1979-1989 to 2002-2012 for
each AOGCM simulation (black) and for observed changes (red) in
circulation index, AZ (ref. 25), and SAT". The cross indicates the forced
response (AOGCM mean), and the line indicates the AOGCM linear
regression (r=—0.77 and p < 0.0001).

Central Asia (McCusker et al 2016)
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Figure 3 | Simulated and observed winter trends from 2001-2002 to
2013-2014 in North American SAT and the tropical Pacific SAT gradient.
a,b, SAT trends averaged over northwest North America (a) and central
North America (b) versus trends in the tropical Pacific ASAT. The red

dot represents the observations. The trends in the ensemble of fully
coupled model simulations are depicted by the ellipses (encompassing
95% of the ensemble members) and the straight line (representing the
best linear fit). The open circles denote the trends in the pacemaker
simulations.

Central N America (Sigmond et al 2016)



Observed Temperature Anomaly: Dec 1 - Feb 28 2009
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Dynamica! Winter quecasts 2009/10-15/16
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Models exhibit warm bias relative to observed winter temperatures.



CFSv2 Forecast of TMP2m Anom 1C=201211 for 2012DJF .. Observed Temperature Anomaly: Dec 1 - Feb 28 2012 o

CFSv2 Forecast of TMP2Zm Anom 1C=201310 for 2013DJF Observed Temperature Anomaly: Dec 1 - Feb 28 2013

CFSvZ Forecast of TMP2m Anom [C=201411 for 2014DJF Observed Temperature Anomaly: Dec 1 - Feb 28 2014
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Dynamical Winter Forecasts 2016/17
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Dynamical Winter Forecasts 2016

o NMME Forecast of TMPZm Anom IC=20160% for 2016JJA Observed Temperature Anomaly Jun-Jul-Aug 2016
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Winter Forecasts 2016

AER Forecast Temperature A ly Dec-Jan-Feb 2017
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Is it Natural Variability?

* How to explain the dramatic temperature change from
warm to cold from fall to winter, like an on/off switch?

* There is strong radiative forcing to warm the climate
and the predictions were for winter amplification.

* The dynamical models have incorrectly predicted all as
warm winters over continents.

* |t is seven/eight years running of cold winters (obs vs.
forecast), which less than 1% probability due to chance.

* Forecasts that are based on boundary forcings have
performed better.

* The temperature anomalies for this fall/winter match

long term trends and those theorized based on AA.
C——



GOALS/REVIEW PAPER




Previous Workshops

* National Academy of Sciences — September 2013
— Large gaps in our understanding
— short observations
— conflicting modeling studies

* Reykjavik Iceland— November 2013

- Topic is controversial
- There is little agreement on mechanisms
- Is a major science challenge & may benefit long-range

forecasts
* Barcelona Spain — December 2014

- Attribution is controversial
- Linkages will be regional
- Potential for improving seasonal forecasts



Goals

* White Paper
* Review Paper
e Special Issue

e Put forth five ideas where we have made advances
— Arctic hot spots/mid-latitude response



Review Paper

* Arctic rapid change
— Thermodynamic forcing
— Dynamic forcing

— Teleconnection, i.e., Tropical forcing
e Arctic mid-latitude linkages — Focus on seasonal and regional
linkages, sources of inconsistence, controversy, and uncertainties
- Warm Barents-Kara Seas - Cold Eurasia
- Warm Beaufort Sea — Cold North America
- Slower Jet Stream
- Greenland Blocking/ice sheet melt
- More amplified waves/persistent weather

- Summer extremes
* Next steps

— Observations
- Modeling



Arctic Mid-latitude Linkages
White paper outline --- To be refined/improved during the workshop
US CLIVAR Arctic-ML Linkage Workshop OC — Jennifer Francis, Thomas Jung, Ronald Kwok,
James Overland, Xiangdong Zhang, Judah Cohen

Arctic rapid change — Emergence of new forcing (external and internal) for atmosphere
circulation

1. Prominent Evidence: (1) amplification of warming - temperature trend divergence
between high- and mid- latitudes; (2) acceleration of sea ice and snow decline
(regionally and seasonally varying).

2. Thermodynamic forcing: (1) anthropogenic forcing — downwelling longwave radiation;
(2) albedo feedback - induced by sea ice and snow retreat; (3) greater water vapor
including local and remote sources; (4) increasing ocean heat content.

3. Dynamic forcing: (1) atmospheric circulation change — local and hemispheric; (2)
poleward heat transport in atmosphere and ocean; (3) poleward moisture transport and
cloud radiative forcing.

4. Teleconnection: Tropical forcing — convection induced changed in atmospheric
circulation.

5. Consequence: Changes in SLP, geopotential height, polar vortex.

Arctic mid-latitude linkages — Focusing on seasonal and regional linkages and emphasizing on
sources of inconsistence, controversy, and uncertainties of existing studies

1. Observations: (1) seasonal climate - anomalously cold winter and hot summer; (2)
extreme events — statistics of cold spells, heat waves, floods, and droughts.

2. Most studied/proposed mechanisms — (1) in depth review of mechanisms ranked by
consensus; (2) uncertainties due to metrics and analysis approaches employed.

3. Warm Barents Kara Seas — cold Eurasia
a) Northwestward expansion and strengthened Siberian high
- Duetolow seaice
- Due to high Eurasian snow cover
- Rossby wave train
- Enhanced poleward heat flux
b) Weakened polar vortex
c) Spatial shift of hemispheric atmospheric circulation
d) Changes in storm track dynamics

4. Warm Beaufort Sea/Bering Strait — cold North America
a) Rossby wave train
b) Slower zonal Jet Stream and amplified waves — persistent circulation pattern
c) Greenland Blocking - Greenland Ice sheet melt

5. Alteration or modulation by tropical and extratropical forcing — e.g., ENSO, AMOC, PDO

Next steps — recommendations
1. Observations
a) Forcing data sets available to investigate Arctic-midlatitude linkage
b) Arctic air-ice-sea interaction — pathways of Arctic forcing signals into hemispheric
atmospheric circulation
c) Metrics to identify forced signals of atmospheric circulation from natural variability

2. Modeling
a) Uncertainties caused by Experiment design and forcing prescription
b) Uncertainties caused by model systematic errors
¢) Coordinated experiments



Summary

* The globe is warming with the past three years the warmest in
the observational record.

* The Arctic is warming two to three times as fast as the rest of
the globe (AA) in part due to melting sea ice and snow cover
and heat/moisture transport.

« Concurrently it appears that extreme weather has been
Increasing.

* Theories exist linking AA to mid-latitude weather including
extreme weather.

* Natural variability, observational limitations and model
shortcomings make this a difficult problem.

« Correct understanding/simulation of cryosphere coupling
remains a challenge but presents great opportunities and our
hope that this workshop will make a significant contribution to

future progress.



