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Arctic sea ice decline since 1979
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Is the AMOC slowing-down??

AMOC SLOW-DOWN IN OBSERVATIONS
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Sevellec et al. 2017, also Rahmstorf et al. 2015



The “Warming Hole” in the subpolar North Atlantic

LOCAL TEMPERATURE TREND FROM 1900-2015 (x 107 K yr”)

Sevellec et al. 2017, also Rahmstorf et al. 2015



i. Adjoint analysis:
AMOC sensitivity to global surface heat
and freshwater fluxes

« Ocean model: NEMO and its tangent linear and adjoint versions

« Method:
computing optimal flux perturbations (maximizing AMOC
volume transport) via an optimization procedure with
Lagrange multipliers

 Flux durations are varied in the range 1-200 years



Optimal heat and freshwater fluxes for the AMOC
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Optimal heat and freshwater fluxes for the AMOC
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Relative impacts of different regions on the AMOC
weakening for different flux durations
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“Observed” surface flux anomalies and AMOC response

RECONSTRUCTED CHANGES IN OCEAN SURFACE FLUXES
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ii. I[dealized numerical experiments
forcing sea ice contraction

 Climate model: CESM-T31
« Methods:
(1) reducing albedo of sea ice (SW experiments)
(2) reducing effective emissivity of sea ice (LW experiments)

« 200-year perturbation experiments



Changes in sea ice and the AMOC response
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Simulated sea ice retreat (SW experiment)

(a) Sea ice extent (%) (Mar, Control)
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SST anomaly induced by sea ice retreat (SW)

(c) ASST (K) (Sep)
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lli. Model intercomparison: CMIP5, CESM1-LE, CESM-T31

(c) Corr (sea ice, AMOC)
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Summary

On decadal timescales, buoyancy anomalies in the subpolar North
Atlantic (the Irminger and Labrador Seas) drive AMOC weakening

On multi-decadal timescales (longer than 20 years), buoyancy
anomalies originating in the Arctic ocean become important

Sea ice decline exposes the Arctic ocean to additional sunlight and
freshwater, generating such buoyancy anomalies that weaken the
AMOC and potentially contributing to the "Warming Hole”

These conclusions are supported by (1) adjoint sensitivity analysis,
(2) idealized experiments forcing sea ice decline, (3) control
simulations of CMIP5 models, and (4) historical/future simulations
within the CESM large ensemble

The recent AMOC slow-down appears to be consistent with this
mechanism (sea ice decline weakens the AMOC)
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CMIP5, CESM-LE & Observations

(a) Arctic sea ice extent

Gray: CMIP5 models
Black: ensemble mean
Light blue: CESM-LE:
ensemble mean
(scenario: RCP 8.5)
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CMIPS, CESM-LE & Obs

CESM-LE historical +RCP85 runs:

(d) Sea ice & AMOC (64yr lag
Arctic sea ice change

(1997-2016) — (1920-1939)
and AMOC change with 64yr lag
(2061-2080) — (1984-2003)
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March mixed layer depth (CESM_T31)




March MLD (Observations: MIMOC)
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LOCAL TEMPERATURE TRENDS FOR 1900-2015 (x 102 °C yr'1)
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LW experiment, Ap; (upper 1000m)
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LW experiment, Apg (upper 1000m)
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LW experiment, ASST
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LW experiment, AT (upper 1000m)
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LW experiment, ASSS
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LW experiment, AS (upper 1000m)
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a normalization constraint on the flux amplitude, we introduce a Lagrangian function:

L (|fhf/fw> ,Y) = (Flu(r)) —v (<fhf/fw|s|fhf/fw> — €, (2)

where ~ is a Lagrange multiplier, S is a normalization operator, and ¢ is a parameter associated

with the normalization constraint:

do f2 s
(Fut /oS Fre/e) = ff”% =€, (3)

where do is a unit surface and fy/s is surface heat and freshwater fluxes, respectively. We set

1

e=1 Wm~2or 1 cm yr~!, which gives the root mean square amplitude of the fluxes. Our goal is to

maximize the cost function subject to this normalization constraint.

From expression (2) and the general optimization condition d£=0, optimal flux perturbations

for the duration 7 are computed as

T 1 T —
| Fhe /i) = i;/o dsS lBLf/fWMT(s) |F),

where { represents an adjoint (defined through an Euclidean scalar product) and

V= / / dsds' (FIM(s)Bug/uS "B, 1 MI(s)|F).
0

Consequently, v gives the optimal impact of the normalized flux anomalies.
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AMOC slow-down

— MOC from RAPID 26°N
1 == MOC* using UMO proxy

1996 2000 2004 2008

Frajka-Williams-2015

2012




AMOC weakening for different flux durations and regions

IMPACT OF OPTIMAL HEAT FLUX ON AMOC INTENSITY
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