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Arctic sea ice decline since 1979 

NSIDC data 
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Is the AMOC slowing-down? 
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Figure 2: Observational evidence for the AMOC decline. (a) Observations (McCarthy
et al., 2012) of the intensity of the Atlantic Meridional Overturning Circulation at 26.5◦N from the
RAPID project showing a slow-down of the AMOC over the past decade (Smeed et al., 2014). (b)
An AMOC index (Rahmstorf et al., 2015) based on the NASA GISS temperature data and defined
as the difference in surface atmospheric temperatures between the subpolar North Atlantic (50◦N
to 60◦N and 10◦W to 50◦W) and the northern hemisphere. This index indicates a negative trend in
the AMOC intensity over the last century. To estimate variations in the AMOC volume transport
we use a typical ratio of 0.3 K Sv−1 linking the overturning strength and North Atlantic surface
temperatures (Muir and Fedorov, 2015). A 4-year running mean was applied and the overall mean
removed. This analysis confirms that the current AMOC slow-down is part of a more gradual
AMOC decline of about 0.2 Sv per decade during the last century.
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SST-based 

Sevellec et al. 2017, also Rahmstorf et al. 2015 
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The “Warming Hole” in the subpolar North Atlantic 

Sevellec et al. 2017, also Rahmstorf et al. 2015 



•  Ocean model: NEMO and its tangent linear and adjoint versions 

•  Method:  
       computing optimal flux perturbations (maximizing AMOC 
       volume transport) via an optimization procedure with 
       Lagrange multipliers 

•  Flux durations are varied in the range 1-200 years 

 i. Adjoint analysis:    
AMOC sensitivity to  global surface heat 

and freshwater fluxes 
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Optimal heat and freshwater fluxes for the AMOC 
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Flux 
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Optimal heat and freshwater fluxes for the AMOC 
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Relative impacts of different regions on the AMOC 
weakening for different flux durations 
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“Observed” surface flux anomalies and AMOC response 
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 ii. Idealized numerical experiments 
forcing sea ice contraction 

•  Climate model: CESM-T31 
 
•  Methods:  
      (1) reducing albedo of sea ice (SW experiments) 
      (2) reducing effective emissivity of sea ice (LW experiments) 
 
•  200-year perturbation experiments 
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Changes in sea ice and the AMOC response 

Sea ice extent 
 
 
 
 
 
 
 
 
 
 
AMOC transport 
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Simulated sea ice retreat (SW experiment) 
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SST anomaly induced by sea ice retreat (SW) 
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Lag-correlations 
between Arctic sea ice 
and AMOC variations 
 
 
 
Negative lag with positive 
correlations = sea ice leads 
AMOC variations 
 
 
CMIP5 models (gray),  
CESM-Large Ensemble (blue),  
CESM-T31 (orange), 
and ensemble mean (black) 
 
 
Preindustrial control runs (500 
years+) 
 
 
  	

iii. Model intercomparison: CMIP5, CESM1-LE, CESM-T31	

AMOC controls 
sea ice 

Sea ice controls 
AMOC 



Summary 
•  On decadal timescales, buoyancy anomalies in the subpolar North 

Atlantic (the Irminger and Labrador Seas) drive AMOC weakening 

•  On multi-decadal timescales (longer than 20 years), buoyancy 
anomalies originating in the Arctic ocean become important 

•  Sea ice decline exposes the Arctic ocean to additional sunlight and 
freshwater, generating such buoyancy anomalies that weaken the 
AMOC and potentially contributing to the “Warming Hole” 

•  These conclusions are supported by (1) adjoint sensitivity analysis, 
(2) idealized experiments forcing sea ice decline, (3) control 
simulations of CMIP5 models, and (4) historical/future simulations 
within the CESM large ensemble 

•  The recent AMOC slow-down appears to be consistent with this 
mechanism (sea ice decline weakens the AMOC) 
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CMIP5, CESM-LE & Observations	

Gray: CMIP5 models 
Black: ensemble mean 
Light blue: CESM-LE: 
ensemble mean 
(scenario: RCP 8.5) 
 
Red: observations 
 
Ice extent is normalized 
by 1979-1989 average 
 
AMOC index is 
normalized by  
the 1900-1919 mean 
 	



CMIP5, CESM-LE & Obs	

CESM-LE historical +RCP85 runs: 
 
Arctic sea ice change 
(1997-2016) – (1920-1939) 
and AMOC change with 64yr lag 
(2061-2080) – (1984-2003) 
 
Correlation between the two =0.5 
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March mixed layer depth (CESM_T31) 
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March MLD (Observations: MIMOC) 



21 



22 



23 



24 



25 



26 



27 



28 



29 



30 

Sevellec 
and 
Fedorov 
2016 



31 

Figure:
WHOI 
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AMOC slow-down 

Frajka-Williams-2015 
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AMOC weakening for different flux durations and regions 
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