New insights into the Southern Ocean's role in climate: An update from SOCCOM

Alison Gray

School of Oceanography University of Washington

> US CLIVAR Summit August 9, 2017

SOUTHERN OCEAN ROLE IN GLOBAL CARBON CYCLE ~30% of global surface ocean area ~50% of global oceanic uptake of anthropogenic CO₂

SOUTHERN OCEAN ROLE IN GLOBAL OVERTURNING CIRCULATION

Upper ocean and thermoclineDenser thermocline and intermediateIndo-Pacific Deep WaterNorth Atlantic Deep WaterAntarctic Bottom Water

SOCCOM

Southern Ocean Carbon and Climate Observations and Modeling

- Six year, \$21 million project to transform our understanding of the Southern Ocean, a major sink of carbon and heat
- Headquartered at Princeton; involves over 80 participants at 13 partner institutions
- Deploying ~200 floats that measure pH, nitrate, oxygen, chlorophyll, particles
- High-resolution modeling and state estimate programs
- Outreach partnership with Climate Central

J. Sarmiento, Princeton K. Johnson, MBARI

www.soccom.princeton.edu

OBSERVATIONS

L. Talley, SIO S. Riser, UW

Floats measure pH, NO_3 , O_2 , backscatter, fluorescence

91 floats deployed81 floats operational

Near real-time data available

SOCCOMViz 6.0 - Data visualization for <u>SOCCOM</u>, a US carbon and climate in the South

Using ISUS nitrate sensors and Deep-Sea DuraFET	pH sensors in Webb
.	profiling floats

Quick Instructions	Float list and link to complete Ascii data files	Data Adjustments	
	Select Float (ctrl click for more than one)	Select One X Variable	
Select Output Type and Send Request:	5146SoOcnN/O/d 5426DrakePassN/O/d 6967SoAtlanticN/O/FL	Nitrate[µmol/kg]	

BROADER IMPACTS

H. Cullen, Climate Central

Southern Ocean Carbon and Climate Observations and Modeling

Education and public outreach

Technology transfer

Navis BGCi + pH Autonomous Profiling Float with Integrated Biogeochemical Sensors

Autonomous profiling float for Argo and other programs, with Sea-Bird CTD, Dissolved Oxygen sensor, integrated WET Labs ECO-MCOMS fluorometer/backscattering sensor and Sea-Bird Scientific Float Deep SeaFET™ pH sensor. The Float Deep SeaFET adapts the field-tested MBARI/SIO/Honeywell Deep-Sea DuraFET technology to measure pH on the Navis BGCi float.

Contact Sales

JOURNAL OF GEOPHYSICAL RESEARCH Oceans AN AGU JOURNAL

Special Issue coming soon

Annual net air-sea CO_2 flux

Mean (mol m⁻² y⁻¹)

STZ: -1.4 ± 0.5

SAZ: -0.6 ± 0.8

PAZ: 2.0 ± 0.9

SIZ: 0.03 ± 0.4

Average global anthropogenic CO_2 uptake = -0.46 ± 0.14 mol m⁻² y⁻¹

Annual net oceanic CO_2 uptake

ROLE OF INTERANNUAL VARIABILITY

2014-2016 anomalies from mean 1979-2016 ERA-Interim fields

ROLE OF INTERANNUAL VARIABILITY

30-year variability from Landschützer estimate

Takahashi et al. 2009 | subsampled
Landschützer et al. 2015 | subsampled
Float estimate – annual mean

88

Previous estimates underestimate outgassing

Outgassing driven by wintertime fluxes, primarily in PAZ

Takahashi et al. 2009 | subsampled
Landschützer et al. 2015 | subsampled
Float estimate – annual mean
Float estimate – summer mean
Float estimate – winter mean

Seasonal cycle of CO_2 flux

Landschützer and Takahashi estimates miss fall and winter outgassing in PAZ

Float-based estimates show a Southern Ocean CO_2 source to atmosphere of 0.1 ± 0.7 PgC y⁻¹, larger than previous estimates of a sink of ~0.8 PgC y⁻¹, driven by wintertime upwelling of carbon-rich deep water.

Explanations include interannual variability and undersampling during fall and winter in previous estimates.

Collaborators:

Jorge Sarmiento, Ken Johnson, Seth Bushinsky, Stephen Riser, Joellen Russell, Lynne Talley, Rik Wanninkhof, Nancy Williams, Carolina DuFour, Henri Drake

Funding: NOAA Climate and Global Change Postdoctoral Fellowship

Extra Slides

FLOAT-BASED pCO₂

 $pCO_2 = f(pH, T, S, A_T)$

pH, T, and S measured by floats

Alkalinity estimated using multiple linear regression Carter et al. 2016

Uncertainty after biascorrection estimated at 2.7% (median 10.5 µatm) Williams et al. 2017

FLOAT-BASED AIR-SEA CO₂ FLUX

+ Outgassing – Uptake

 $\Delta pCO_2 = pCO_2^{ocn} - pCO_2^{atm}$ pCO₂^{atm} from Cape Grim observations

> Gas transfer velocity, \propto wind speed squared Wanninkhof 2014

6-hourly ERA-Interim winds

 K_0 solubility constant

k

ROLE OF INTERANNUAL VARIABILITY

Anomalous CO₂^{atm} associated with 2015-2016 ENSO

A. Jacobson, personal communication

COMPARISON TO SHIPBOARD ΔpCO_2

Shipboard data from SOCAT v4, within 100 km and 10 days of float profile

Float-based estimates compare well to SOCAT, except in STZ where temperature differences are large

Seasonal cycle of nitrate in upper 20 m

Floats measure higher nitrate in PAZ compared to World Ocean Atlas

Southern Ocean oxygen fluxes

– Uptake

+ Outgassing

Bushinsky et al., JGR, in revision

Zone	Flux (mol m ⁻² y ⁻¹)		
	O ₂	CO ₂	
STZ	1.9 ± 1.5	-0.9 ± 0.5	
SAZ	0.1 ± 1.6	-0.3 ± 0.5	
PAZ	-1.8 ± 3.2	I.6 ± 0.7	
SIZ	-6.4 ± 1.6	-0.4 ± 0.4	

Ratio $O_2/CO_2 = -0.7 (R^2=0.93)$ = -106/150 Redfield ratio Consistent with upwelling of Circumpolar Deep Water High in NO₃ and DIC Low in O₂

SOUTHERN OCEAN CIRCULATION

Zonal flow – Antarctic Circumpolar Current (ACC)

Meridional flow – two overturning cells linked by upwelling of Circumpolar Deep Water

PF – Polar Front AAIW – Antarctic Intermediate Water UCDW – Upper Circumpolar Deep Water

LCDW – Lower Circumpolar Deep Water NADW – North Atlantic Deep Water AABW – Antarctic Bottom Water

CURRENT VIEW OF OCEANIC CARBON UPTAKE

CURRENT VIEW OF OCEANIC CARBON UPTAKE

Preindustrial

Observation-based

Contemporary

= Preindustrial + Anthropogenic

Adapted from Morrison et al. 2015

Observations of the Southern Ocean

Historical: Surface Ocean CO₂ Atlas (SOCAT v2),1970-2011

Surface partial pressure of CO_2 (p CO_2)

Sources of uncertainty in Air-sea flux

Source of uncertainty	Value
Measured T, random	0.002 C
Measured S, random	0.01 PSU
Gas transfer parameterization, random	12.5% + 10% for low winds, Wanninkhof 2014
Wind speed, random	1.5 m s ⁻¹ , Chadhuri et al. 2013
Estimated pCO ₂	2.72%, Williams et al. 2017
Systematic for all floats	2.04%
Systematic per float	0.04%
Random	1.75%
pCO ₂ ^{atm} , systematic	Given with measurements
P _{atm} , systematic	10 atm, Salstein et al. 2008

SOUTHERN OCEAN CIRCULATION

Zonal flow – Antarctic Circumpolar Current (ACC)

Two meridional overturning cells

Upwelling of deep water

Northward return in bottom and intermediate layers

Olbers and Visbeck 2005

PF – polar front AAIW – Antarctic Intermediate Water UCDW – Upper Circumpolar Deep Water LCDW – Lower Circumpolar Deep Water NADW – North Atlantic Deep Water AABW – Antarctic Bottom Water

Annual net oceanic CO_2 uptake

- This estimate
- ★ Takahashi et al. 2009
 - Landschützer et al. 2014
- 2002-2011 mean
- 30-yr estimate

SAMPLING BIAS

Floats sampling downstream of upwelling hotspots

ROLE OF INTERANNUAL VARIABILITY

Using SOCCOM data in neural network mapping of global CO₂ flux reduces uptake in 2014-2016

IMPLICATIONS FOR MODELING CARBON CYCLE

Most CMIP models follow previous observational estimates CanESM has large CO_2 outgassing, high nitrate, strong winds

S. Schlunegger, personal communication

PCO_{2SW} calculated at a range of realistic open ocean surface ocean pH and TA values using T = 15 °C, S = 35, and P = 5 db.

Williams et al, in prep

The difference between pCO_{2sw} calculated from in situ bottle-measured pH and bottle TA and underway-measured pCO_{2sw} at the same temperature plotted as a function of temperature for three GO-SHIP/SOCCOM deployment cruises. Positive values indicate that calculated pCO_{2sw} (pH,TA) is higher than underway-measured pCO_{2sw} .

Williams et al, in prep

MODEL COMPARISON

C. Dufour McGill University

	center	name	vertical coordinate	ocean resolution	scenario (time period)
1	CERFACS	CNRM-CM5	z		
	NOAA-GFDL	GFDL-ESM2G	isopycnal		historical (1996–2005)
	NOAA-GFDL	GFDL-ESM2M	z		
	IPSL	IPSL-CM5A-LR	z	0.4° to 2°	
	IPSL	IPSL-CM5A-MR	z		
	MIROC	MIROC-ESM	isopycnal		
	MPI-M	MPI-ESM-MR	z		
	NCC	NorESM1-ME	z		
	NOAA-GFDL	CM2.6	z	0.1°	idealized 1%/yr (years 21–30)
	Scripps	SOSE*	z	1/6°	historical (2008–2012)

All models are climate models except SOSE which is an ocean-sea ice data assimilating model forced by atmospheric reanalyses (NCEP)

Model comparison in PAZ

C. Dufour McGill University

Poor agreement in PAZ for annual mean and seasonal cycle

CMIP5 models GFDL CM2.6 SOSE Float estimate

WHY ARE THE MODELS DIFFERENT (WRONG)?

Dependence on wind stirring and mixed layer depth seasonality

Rodgers et al., 2014

Mean MLD 50-60°S Observations Control Increased wind stirring

Changes (Wind Stir – Control)

WHY ARE THE MODELS DIFFERENT (WRONG)?

Dependence on mesoscale eddies and timescale of upwelling

- a) Trajectories in Latitude / Longitude space
- b) Trajectories in Latitude / Depth space

		Mode of	Mean
	Experiment	upwelling	number of
		TTD (years)	$\operatorname{circumpolar}$ loops
1°	CM2-1deg-5day	87	3.2
0.25°	CM2.5-5day	31	1.7
0.1°	CM2.6-5day	17	0.9
	CM2.6-monthly	26	0.9

Drake et al., in prep

