

# Year of Polar Prediction (YOPP): Arcticmidlatitude linkages considered from a prediction perspective

Thomas Jung<sup>§</sup>, Tido Semmler<sup>§</sup>, Soumia Serrar<sup>§</sup>, Marta Kasper<sup>§</sup> & PPP steering group

<sup>§</sup>Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Germany





# **Part I: Year of Polar Prediction**



- > In the late 2000s several aspects came together
  - Discussion on the legacy of the International Polar Year (IPY, 2007-2008)
  - Discussion of the future of the World Weather Research Programme (WWRP)
  - Arctic climate was changing rapidly
- Polar prediction moved into the focus
- WWRP decided to launch the Polar Prediction Project (2013–2022)
- > Year of Polar Prediction (YOPP)





### **YOPP** mission statement:

Enable a significant improvement in environmental prediction capabilities for the polar regions and beyond, by coordinating a period of intensive observing, modelling, prediction, verification, user-engagement and education activities.





### Arctic amplification of climate change







### **Relatively poor observational coverage**

- Synop
- Ship
- Pilot
- 📥 Radiosonde
- Radiosonde
- Profiler
- Aircraft
- Drifting buoys
- Synop B



Polar data coverage of conventional observations in the ECMWF operational analysis on 15 April 2015

Jung et al. (2016), BAMS



### Implications for predictions in lower latitudes



Jung et al. (2014), Geophys. Res. Lett.





WWRP/PPP No. 4 - 2016

WWRP Polar Prediction Project Implementation Plan for the Year of Polar Prediction (YOPP)



http://polarprediction.net



# What? (selected)



- Improve the polar observing system to provide better coverage of high-quality observations in a cost-effective manner.
- Gather additional observations through field programmes aimed at improving understanding of key polar processes.
- Improve representation of key-processes in uncoupled and coupled models used for prediction.
- Develop improved data assimilation systems that account for challenges in polar regions (e.g. sparse data, steep orography).
- Improve understanding of linkages between polar regions and lower latitudes and assess skill of models representing theses.







Jung et al. 2016, BAMS











# Part II: Arctic-midlatitude linkages considered from a prediction perspective



### **Arctic relaxation**









Jung et al. (2014)



### Seasonality



#### Z500 Forecast Error Reduction (D+8 - D+14)







### **Observing System Experiments (OSEs)**







Fast response of synoptic activity to thinner Arctic sea ice



Semmler et al. (2016)

![](_page_16_Picture_5.jpeg)

![](_page_17_Picture_1.jpeg)

# Sensitivity of D+2 forecast error in the Arctic to temperature perturbations of the initial conditions

![](_page_17_Figure_3.jpeg)

Jung and Leutbecher (2007)

![](_page_17_Picture_5.jpeg)

## Summary

![](_page_18_Picture_1.jpeg)

- The Year of Polar Prediction will provide...
  - More and better data (e.g. coupled reanalysis), but not necessarily longer time series
  - Enhanced models
  - A framework for coordinated experimentation
- Prediction experiments provide alternative perspective
  - Focus on atmospheric teleconnections (verifiable)
  - Regional differences in Arctic-midlatitude linkages

![](_page_18_Picture_9.jpeg)