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ü  Examine	low-frequency	North	AtlanNc	variability	(AMOC,	SPNA	SST,	Sahel	
rainfall,	and	NAO)	from	CESM1-CAM5	Large	Ensemble	(LE;	35	members)	and	
control	simula4on	(CTRL;	800-2200),	and	compare	to	observaNonal	esNmates	

ü  Show	the	simulated	mulNdecadal	variability	is	substanNally	weaker	than	
observaNonal	esNmates	

ü  Show	the	weak	simulated	mulNdecadal	variability	can	be	traced	to	weak	
mulNdecadal	variability	in	simulated	NAO	

Outline	
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Kim	et	al.,	2017:	Low-frequency	North	Atlan4c	climate	variability	in	the	Community	
Earth	System	Model	Large	Ensemble	simula4ons.	SubmiZed	to	J.	Climate	(in	revision).	
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coefficients between the AMV index and SST are positive

almost over the entire North Atlantic (Fig. 1b, Sutton and
Hodson 2005). The region with largest positive regression

is located in the mid-latitude (30!N–60!N) and eastern

tropical North Atlantic, while the weaker regression values
are in the western tropical and subtropical North Atlantic.

The simulated AMV indices in the ten models are cal-

culated using the same definition as for observations. In all
models, SST averaged over the North Atlantic (for the

same region as the index) is colder than observed

(Table 2). Except for INMCM4, the models simulate
weaker AMV than observed during the instrumental period

(Table 2). These differences could result from the external

forcing that is fixed to preindustrial conditions in the most
control simulations.

The corresponding power spectra of the simulated AMV

indices show a wide range of variability, but exhibit a
similar red noise character (Fig. 2). Most AMV indices

show power on multi-decadal time scales, but with dif-

ferent periodicity. The spatial patterns of SST variation

associated with the AMV index in the ten models are

illustrated in Fig. 3. The regression patterns show simi-
larities with the observations in most models, with the

largest loadings in the mid-latitude region and weaker

regression in the western tropical and subtropical North
Atlantic. However, the regression values are higher than in

observations. Except for CNRM-CM3, KCM and IPSL-

CM4, the regressions in the eastern tropical and subtropical
region are weaker than mid-latitude region. The INM-CM4

has the weakest regression over the North Atlantic. Had-

CM3 shows the strongest negative regression over the
Arctic region and MIROC shows the strongest negative

regression values in the Greenland-Iceland-Norwegian

(GIN) Sea region. In addition to model error, differences in
patterns could also be related to observational uncertainties

as well as the absence of time varying external forcing in

our simulations.

Fig. 1 a Observed Atlantic
multidecadal variability (AMV)
Index defined as linearly
detrended North Atlantic
(0–60!N) average sea surface
temperature (SST). b The
spatial pattern of observed SST
variation over North Atlantic
associated with the observed
AMV Index by regressing the
detrended SST on the
normalized AMV index

Table 2 Mean SST averaged over the North Atlantic (0!–60!N,
7.5!–75!W) and the standard deviation of the AMV indices in
observation and ten CGCMs

Observation/model Mean (!C) Standard deviation (!C)

Observation 21.08 0.26

BCM 18.34 0.12

MPI-ESM-CR 20.96 0.17

EC-EARTH 19.90 0.14

IPSL-CM4 19.31 0.21

KCM 18.60 0.18

HadCM3 20.48 0.21

CNRM-CM3 19.93 0.20

CMCC 19.61 0.14

MIROC 19.14 0.15

INM-CM4 18.78 0.36

Fig. 2 The spectra of detrended AMV Indices in ten coupled general
circulation models (CGCMs). The AR1 red noise fit is the mean of the
AR1 red noise fits from ten models. Due to the varying autocorre-
lation for the models, the individual red-noise spectra are not shown
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Rainfall	

rainfall is highly correlated with All India Summer
Rainfall [Parthasarathy et al., 1994]. Over west central
India, the multidecadal wet period is in phase with the
positive AMO phase (warm North Atlantic) during the
middle of the 20th century (!1926–1965); the dry
periods are in phase with the negative AMO phase during
both the early (!1901–1926) and the late 20th century
(!1965–1995) (Figures 1a and 1c). The time series of
west central India summer rainfall is in phase with Sahel
summer rainfall (Figures 1b and 1c). The leading spatial
pattern (EOF 1, from Empirical Orthogonal Function
analysis, Figure 2a) of observed 20th century summer
rainfall anomalies over the region covering both Africa
and India also suggests an in-phase relationship between
India and Sahel summer rainfall. The time series of this
spatial pattern is in phase with the observed AMO index
(Figures 1a and 1d).
[5] The observed AMO Index is also in phase with the

observed time series of the number of major Atlantic
hurricanes and the Hurricane Shear Index (Figures 1a
and 1e), consistent with previous studies [Gray, 1990;
Landsea et al., 1999; Goldenberg et al., 2001]. Here the
Hurricane Shear Index is defined as the anomalous 200-hPa–
850-hPa vertical shear of the zonal wind multiplied by "1,
computed during Hurricane season, August to October-

Figure 1. Observed and modeled variability. The color
shading is the low-pass filtered (LF) data and the green
dash line is the unfiltered data. (a) Observed AMO
Index(K), derived from HADISST [Rayner et al., 2003].
(b) Observed JJAS Sahel rainfall anomalies (averaged over
20!W-40!E, 10–20!N). All observed rainfall data is from
Climate Research Unit (CRU), University of East Anglia,
United Kingdom (CRU-TS_2.1). (c) Observed JJAS west
central India rainfall anomalies (averaged over 65–80!E,
15–25!N). (d) Observed time series of the dominant
pattern (PC 1) of LF JJAS rainfall anomalies. (e) Observed
anomalous Atlantic major Hurricane number (axis on the
left, original data from the Atlantic basin hurricane
database- HURDAT, with no bias-type corrections from
1944–1969 as recently recommended by Landsea [2005],
there is no reliable data before 1944), and observed
Hurricane Shear Index (1958–2000), derived from ERA-40
[Simmons and Gibson, 2000] (m/s, brown solid line for LF
data, brown dash line for unfiltered data, axis on the right).
(f) Modeled AMO Index(K). (g) Modeled JJAS Sahel
rainfall anomalies. (h) Modeled JJAS west central India
rainfall anomalies. (i) Modeled PC 1 of LF JJAS rainfall
anomalies. (j) Modeled Hurricane Shear Index(m/s). All LF
data in this paper were filtered using the Matlab function
’filtfilt’, with a Hamming window based low-pass filter and
a frequency response that drops to 50% at the 10-year
cutoff period. All rainfall time series are normalized by the
SD of the corresponding LF data, i.e. 9.1 and 5.5 mm/
month for Figures 1b and 1g; 12.5 and 7.1 mm/month for
Figures 1c and 1h, 371 and 261 mm/month for Figures 1d
and 1i. Light blue lines mark the phase-switch of AMO.

Figure 2. Leading spatial pattern of the 20th century low
frequency JJAS rainfall anomalies over Africa and India.
(a) EOF 1 (31%) of observed LF JJAS rainfall anomalies.
(b) EOF 1 (67%) of modeled LF JJAS rainfall anomalies.
(c) Regression of observed LF JJAS rainfall anomalies on
observed AMO Index. (d) Regression of modeled LF
JJAS rainfall anomalies on modeled AMO Index. The
observed rainfall is from CRU-TS_2.1. The original
regressions correspond to 1 SD of the AMO index,
Figures 2a and 2c are normalized by the SD of observed
time series of the dominant pattern, i.e. PC1 (371 mm/
month), and Figures 2b and 2d are normalized by the SD
of modeled PC1 (261 mm/month). The modeled EOF1
explains much higher percentage of variance due to
ensemble average.
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Zhang	&	Delworth	(2006)	

FIG. 11. Spatial patterns of simulated response to an increase in the AMOC induced by NAO-related surface heat flux anomalies. The
responses are averaged over JAS. Results are shown from simulations with (a)–(e) 20- and (f)–(j) 100-yr NAO forcing. Values plotted are
regression coefficients of the various fields vs the time series of the heat flux forcing; these are normalized to represent the response to
a two-standard-deviation change in the NAO-induced fluxes. Results in (a)–(e) are shown for a 20-yr time scale of flux forcing, showing
fields 7 years after maximum of imposed NAO flux forcing. Results in (f)–(j) are shown for a 100-yr time scale of flux forcing, plotted 13
years after maximum of imposedNAOflux forcing. The vertical shear of the zonal wind in (e),(j) is calculated as the zonal wind at 250 hPa
minus the zonal wind at 850 hPa.
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to a spatial correlation criterion (r> 0.25 between the anomaly and the centroid). The same regime must last
for at least 3 days to be selected as a regime occurrence.

3. Results
3.1. AMV Characteristics in CMIP5 Control Runs

The amplitude of multidecadal variability in the AMV time series from the models and observations is evalu-
ated through a Markov spectrum analysis in Figure 2 (the AMV indices are not low-pass filtered for this ana-
lysis in order to keep the full spectrum of variability in the time series) and as a ratio of variance of the
observed AMV in Table 2 (after filtering the piControl AMV to remove variability that is larger than the length
of observations). Figure 2a shows the power spectrum of the AMV index in piControl simulations along with
the observed AMV-gsst index to compare the internal AMV from models with our estimate of the unforced
AMV in observations. Most of themodels exhibit less energy than the observed AMV around the 70 year band
for which the peak is significantly above the red-noise confidence interval in observations (as marked by a
cross). Two models exhibit large multidecadal variability, GFDL-ESM2G and HadGEM2-ES, with a peak of
energy around 45 years and 60 years, respectively (note that the peak of energy at 60 years in HadGEM2-ES
is very close to the 95% confidence level). In agreement with Figure 2, these two models are the only ones
that exhibit an amount of variance in the 10–144 year window that is comparable to observations (Table 2,
ratios close to 1). They also exhibit the largest AMV persistence, as estimated by the e-folding time of auto-
correlation of the AMV time series (Table 2), which is systematically smaller than in observations (even though
the observed persistence is subject to uncertainty, ranging from 7 to 12 years depending on the choice of
internal AMV index).

Figure 2. (a) Variance spectra of the observed AMV-gsst index (1870–2013, black line) and of the AMV simulated by CMIP5
models in preindustrial control runs (internal AMV only). (b) Same as Figure 2a but for the observed AMV-detrend index
(black line) and the AMV from CMIP5 historical runs (internal + forced component of AMV). Crosses indicate frequencies for
which the energy is significantly different from a red noise process (95% confidence level).
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maximum time lag when the autocorrelation first crosses
the significance line at the 80% level (Figure 3). A close
inspection finds that the model persistence varies from 5
and up to 22 years, implying the potential for predicting
future SSTs. However, for most of models the persistence
is shorter than that of observation (the persistence of

ERSST is about 12 years). Meanwhile, the AMO persist-
ence in CMIP5 is much longer than that in CMIP3 which
shows an averaged persistence about 5 years [Medhaug and
Furevik, 2011]. Figure 4 shows the power spectrum of the
detrended annual mean AMO index. ERSST primarily has
three peaks of energy spectrum around 40 years, 25 years,

Figure 3. Autocorrelation of the AMO index in CMIP5 models (color lines) and observation (thick
black line) with lags from 0 to 35 years. The dash line indicates the 80% confidence level for the
observed AMO.

Figure 4. Power spectrum of the annual mean AMO index in CMIP5 historical simulations (color
lines) and in observation (thick black line). The time series are linear detrended but not filtered. The
dash line represents the ensemble mean of the power spectrum in all CMIP5 models. The dash gray line
denotes the 90% confidence red noise spectrum.

ZHANG AND WANG: AMO AND AMOC SIMULATIONS IN CMIP5
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Peings	et	al.	(2016)	

Why	is	mu4decadal	NASST	variability	(AMV)	in	coupled	models	weak	
compared	to	observa4ons?	

Weak	AMV	Power	in	Coupled	Simula4ons	

US	AMOC	Mee4ng,	May	25,	2017,	W.	M.	Kim	(whokim@ucar.edu)	

Zhang	and	Wang	(2013)	

Autocorrela4on	Power	Spectrum	

ü  The	observed	AMV	paZern	is	generally	captured	in	CMIP	coupled	models,	but…	

ü  Low-frequency	power	of	the	simulated	NASST	(AMV)	in	such	models	seems	to	be	
too	weak	compared	to	observaNons	



shortwave radiation at the top of the atmosphere are
shown in Fig. 7e; the variance increases by a factor of 1.5
from the 20-yr forcing to the 100-yr forcing. This positive
albedo feedback is more effective at longer time scales
as progressively more of the cryosphere is altered by the
NAO-induced AMOC changes and therefore partici-
pates in the positive feedback. We also show the time
series of average air–sea heat flux poleward of 238N in
Fig. 7f. The variance of the air–sea heat flux time series
also increases in the 100-yr forcing case relative to the
20-yr forcing case by a factor of 2. As the amount of sea
ice decreases, more open ocean is available to flux heat
more effectively from the ocean to the atmosphere;
since the sea ice extent is more powerfully impacted on
longer time scales, this air–sea heat flux term is also
stronger for longer time scales. However, this term is
somewhat limited by the total anomalous heat transport
in the ocean.
The above suggests that NAO-induced changes in

the AMOC create changes in ocean heat transport
that drive hemispheric-scale variations in surface air

temperature and sea ice. In addition, the effect becomes
much stronger at long time scales because of the greater
time integral of the ocean heat transport changes and
feedback processes associated with changes in snow
cover and sea ice.

b. Heat budget diagnostics

We next examine in Fig. 8 the changes in oceanic and
atmospheric heat transport, as well as changes in the
top-of-the-atmosphere radiation balance, generated by
the simulations with 100-yr NAO flux forcing using
CM2.1 (results from the 50-yr forcing simulations are
similar). In Fig. 8a we plot the linear regression co-
efficients of the time series of the NAO forcing with it-
self at various lags; this provides a visual perspective for
interpreting the phasing of the changes shown in
Figs. 8b,c. We show in Fig. 8b the linear regression co-
efficients of poleward oceanic heat transport at 508N
(integrated over all depths) versus the NAO flux forcing
time series at various lags (where negative lags refer to
times before a maximum of the NAO forcing). We find

FIG. 7. Time series of various quantities in model simulations driven by a periodic NAO heat flux forcing. Shown
are the results from a 20-yr time scale NAO forcing experiment (black) and a 100-yr time scale NAO forcing (red).
Each time series is the 10-member ensemblemean of the NAO forced experiment minus the corresponding control
simulation. The 20-yr (100 yr) forcing experiments are 100 (200) years in duration: (a) AMOC index (Sv),
(b) meridional ocean heat transport (1015W) at 238N, (c) surface air temperature (K) averaged over all points
poleward of 238N, (d) annual-mean sea ice thickness (cm) averaged over all points poleward of 558N, (e) annual-
mean net upward shortwave radiation at the top of the atmosphere (Wm22) averaged over all points poleward of
238N and (f) ocean–atmosphere heat flux (Wm22) averaged over all points poleward of 238N.
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shortwave radiation at the top of the atmosphere are
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pates in the positive feedback. We also show the time
series of average air–sea heat flux poleward of 238N in
Fig. 7f. The variance of the air–sea heat flux time series
also increases in the 100-yr forcing case relative to the
20-yr forcing case by a factor of 2. As the amount of sea
ice decreases, more open ocean is available to flux heat
more effectively from the ocean to the atmosphere;
since the sea ice extent is more powerfully impacted on
longer time scales, this air–sea heat flux term is also
stronger for longer time scales. However, this term is
somewhat limited by the total anomalous heat transport
in the ocean.
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FIG. 7. Time series of various quantities in model simulations driven by a periodic NAO heat flux forcing. Shown
are the results from a 20-yr time scale NAO forcing experiment (black) and a 100-yr time scale NAO forcing (red).
Each time series is the 10-member ensemblemean of the NAO forced experiment minus the corresponding control
simulation. The 20-yr (100 yr) forcing experiments are 100 (200) years in duration: (a) AMOC index (Sv),
(b) meridional ocean heat transport (1015W) at 238N, (c) surface air temperature (K) averaged over all points
poleward of 238N, (d) annual-mean sea ice thickness (cm) averaged over all points poleward of 558N, (e) annual-
mean net upward shortwave radiation at the top of the atmosphere (Wm22) averaged over all points poleward of
238N and (f) ocean–atmosphere heat flux (Wm22) averaged over all points poleward of 238N.
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20-yr	NAO	forcing	

Delworth	&	Zeng	(2015)*	

The	AMOC	and	NH	Ts	vary	on	the	4me	scale	of	
imposed	NAO	heat	flux	forcing	
*	AddiNonal	periodic	heat	flux	associated	with	observed	NAO	
applied	over	the	NA	in	coupled	ensembles	with	varying	
Nme	scales	

100-yr	NAO	forcing	

Rela4onship	between	NAO-AMOC-AMV	

US	AMOC	Mee4ng,	May	25,	2017,	W.	M.	Kim	(whokim@ucar.edu)	

AMOC	

NH	Ts	

Generally, compared with the interannual NAO pattern, larger inconsistencies with respect to the observa-
tions are evident in the simulated decadal NAO pattern (Figure A3). The correlation between the simulated
and observed decadal NAO patterns is no greater than 0.90 for any of the models (Figure 4b). The MME pat-
tern (Figure 3d) shows a clearly eastward displacement for both centers of action of the decadal NAO when
compared with the observations (Figure 3b). In addition, most of the simulated Azores Highs are located
north of the observed location. There is a large spread in the ratios of the standard deviations of the simu-
lated and observed decadal NAO patterns among the models (Figure 4b). Most of the ratios are larger than
1.0, although the MME pattern shows a smaller maximum in the centers of action of the NAO (Figure 3d). This
is probably due to the fact that the decadal NAO pattern in the models is more spread out over the domain,
which leads to higher spatial standard deviation despite smaller maxima in the centers of action.

In most of the model simulations, the NAO is the first EOF mode of decadal SLP variability over the North
Atlantic sector. However, for INM-CM4, the first mode shows a tripole pattern (not shown), and the second
mode is closer to the NAO. In fact, the first two EOF modes simulated by INM-CM4 are not independent of
each other based on the criterion suggested by North et al. [1982]. The explained variance of the decadal
NAO mode varies considerably among the models. For example, the smallest and largest variances are
34.4% (FGOALS-g2) and 72.7% (FGOALS-s2), respectively. Taking the uncertainty of this value into account,

Figure 5. Taylor diagram of the (a) annual mean and (b) 11 year running-averaged NAOI. See Figure 2a for which model
each number represents.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025979
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Wang	et	al.	(2017)	

CMIP5	

Most	of	CMIP5	models	underes4mate	decadal	
NAO	variability	
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AMV/SPNA	SST	
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(HadISST)	

AMV	Regression	Pa]ern*	
LE	 HadISST	

SPNA	SST	Time	Series	

ºC/ºC	
*Ensemble	mean-removed	and	11-yr	lowpass-filetered	Nme	series	are	used	for	the	regression	analyses	
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Distribu4on	of	30-yr	Moving	Trends	in	the	individual	ensemble	members	of	
LE	
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Low-frequency	AMOC	Variability	
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Power	Spectrum	 Distribu4on	of	Moving	Trends	

Distribu4on	of	Moving	Trends	in	the	individual	ensemble	members	of	LE	

50 20 10 5

10−2

10−1

100

101

(a) Raw

Period [yr]

Va
ria

nc
e

 

 
LE Spread
LE mean
Obs (1921−2009)
Obs (1870−2015)

50 20 10 5

(b) Ensemble Mean Removed

Period [yr]

−1

−0.5

0

0.5

1

Obs LE CTRL

5 yr

N
or

m
al

iz
ed

 U
ni

t

Obs LE CTRL

15 yr

Obs LE CTRL

30 yr

−1

−0.5

0

0.5

1

Obs1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

N
or

m
al

iz
ed

 U
ni

t

−1

−0.5

0

0.5

1

Obs LE CTRL

5 yr

N
or

m
al

iz
ed

 U
ni

t

Obs LE CTRL

15 yr

Obs LE CTRL

30 yr

−1

−0.5

0

0.5

1

Obs1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

N
or

m
al

iz
ed

 U
ni

t

5-yr	 30-yr	

−1

−0.5

0

0.5

1

Obs LE CTRL

5 yr
N

or
m

al
iz

ed
 U

ni
t

Obs LE CTRL

15 yr

Obs LE CTRL

30 yr

−1

−0.5

0

0.5

1

Obs1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

N
or

m
al

iz
ed

 U
ni

t

This	suggests	that	the	weak	mul4decadal	North	Atlan4c	climate	variability	
in	CESM1	is	likely	related	to	the	weak	simulated	mul4decadal	NAO	
variability	(i.e.,	NAO	->	AMOC	->	SPNA	SST)	
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Low-frequency	Variability	in	Other	Atmospheric	Modes	
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SST	forcing	and	stratosphere–troposphere	coupling	are	suggested	as	possible	sources	
for	low-frequency	NAO	variability	

Some	Remarks	on	the	Mul4decadal	NAO	Variability	

US	AMOC	Mee4ng,	May	25,	2017,	W.	M.	Kim	(whokim@ucar.edu)	

WN:	syntheNc	white	noise	ensemble	(	89-year	long	x	5000	members	=	445,000-year	long)	
LT:	CAM5	historical	ensemble	(10	members)	with	interannually	varying	observed	SST	in	the	tropics	
HT:	high-top	CAM5	historical	ensemble	(10	members)	with	interannually	varying	observed	SST	everywhere	

ü  No	enhanced	mul4decadal	NAO	variability	with	realis4c	boundary	condi4ons	and	
be]er	resolved	stratospheric	dynamics		

ü  All	simulated	NAO	variability	using	CAM5	is	close	to	white	noise	
ü  Sugges4ng	a	deficiency	in	simula4ng	low-frequency	NAO	variability	in	CAM5	or	

coupling	methods	
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ü  The	mul4decadal	North	Atlan4c	climate	variability	in	CESM1-CAM5	is	weak	
compared	to	observa4onal	es4mates	

Summary/Discussion	

US	AMOC	Mee4ng,	May	25,	2017,	W.	M.	Kim	(whokim@ucar.edu)	
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Summary/Discussion	

US	AMOC	Mee4ng,	May	25,	2017,	W.	M.	Kim	(whokim@ucar.edu)	

ü  The	mul4decadal	North	Atlan4c	climate	variability	in	CESM1-CAM5	is	weak	
compared	to	observa4onal	es4mates	

v  Interannual	to	decadal	variability	is	comparable	

ü  We	claim	that	the	weak	mulNdecadal	variability	can	be	traced	to	weak	
mul4decadal	variability	of	simulated	NAO	

Ø  Possibly	due	to	deficiencies	in	CAM5	(horizontal/verNcal	resoluNon,	parameterized	
physics)	and/or	coupling	method?	

ü  Overall	weak	North	AtlanNc	climate	variability,	including	NAO,	is	also	found	in	
other	CMIP5	models	(Kravtosv	&	CallicuL	2017;	Wang	et	al.	2017)	

Ø  Weak	mul4decadal	AMV	in	coupled	models	can	be	due	to	the	weak	mul4decadal	
variability	of	the	simulated	NAO	



SPNA	SST-NAO-Lab.	Sea	Heat	Flux	Coupling	
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ü  Forced	ocean	(POP)	simula4on	(FO;	Yeager	&	Danabasoglu,	2014)	
•  Forced	with	CORE-II	interannual	forcing	(1948-2009;	1958-2009	analyzed)	
•  Same	ocean	component	and	configura4on	as	in	LE	
•  Shows	a	good	agreement	with	available	observa4ons	for	AMOC-related	variables	

We note that this central LS region is intended to match
the region with available observations and differs
slightly from the LS regions used in this study (see
below). Gelderloos et al. (2013) consider several sources
of direct MLD observations for the 1993–2009 period
and categorize LS MLDs into shallow (,1000m),
intermediate (between 1000 and 1500m), or deep
(.1500m) regimes as well as two intervening regimes
when observed MLD is within 50m of the transition
values between these three major regimes. To extend
the observational MLD estimates back in time, we
apply the same regime definitions to directly measured
MLDs at the Ocean Weather Station Bravo located in
the central LS for the 1964–74 period (568N, 518W;
Gelderloos et al. 2012).
We note that some mismatches between the modeled

and observed MLDs are expected because differing
MLD definitions used: While we use a buoyancy
gradient criterion as described in Large et al. (1997)
to determine modeled MLDs, the definitions of
MLD for the observational data used in Gelderloos
et al. (2013) vary but are essentially based on po-
tential density profiles. Figure 1 shows good quali-
tative agreement between the modeled and observed
MLDs. Specifically, for the later period, CTRL re-
produces the observed regime shift from a deep
convection phase in the early-to-mid 1990s to a
shallower intermediate phase during the late 1990s
and mid-2000s, followed by the resumed deep con-
vection in 2008. In addition, CTRL successfully simu-
lates the observed abrupt return of deep convection in
the 1972–74 winters from suppressed convection for
the 1969–71 winters. These agreements give us confi-
dence that the hindcast simulations can indeed be used
to explore the origins of the deep convection event in
the 2008 winter.

We augment CTRL by several sensitivity experi-
ments, summarized in Table 1, to identify both the
dominant contributors from among the various at-
mospheric forcing fields and the role of oceanic
preconditioning to the 2008 deep convection event.
The atmospheric forcing impact is decomposed in
terms of flux components and frequency band (i.e.,
synoptic vs longer frequency). We isolate the most
important processes by integrating the model with
various combinations of atmospheric forcing vari-
ables and initial conditions of the 2007 and 2008
winters. We note that the purpose of the sensitivity
experiments in which different forcing variables
from the two winters are combined is to heuristically
identify the most important atmospheric variable
responsible for the deep convection in the 2008
winter, and not to rigorously quantify their rela-
tive contributions. The details of the experimental
setups for these sensitivity experiments are given
in section 3c, together with results from these
experiments.

3. A case study of the 2007 and 2008 winters

a. Atmospheric conditions

We first show, in Fig. 2, the daily time series of the
CORE-II-derived and OAFlux turbulent heat fluxes,
and near-surface (10m) air temperature (SAT), zonal
andmeridional winds, and wind speed fromCORE-II and
ASR (except for zonal and meridional winds) for the
winters of 2007 and 2008. All time series are averages over
the central LS region defined by 568–628N and 598–468W
(boxed region in Fig. 3b). The mean, variance, and cor-
relation values discussed below are based on the CORE-
II-derived data, but similar values are obtained for other
products.
The turbulent heat fluxes (positive upward; i.e., heat

losses from the ocean) in the LS agree remarkably well
between the CORE-II-derived product andOAFlux. As
discussed earlier, greater winter-mean (December through
March) heat release from the ocean in the 2008 winter
than in the 2007 winter (241 vs 173Wm22) is accompa-
nied by much colder 2008 winter-mean SAT (26.08
vs 21.28C). The daily variability of these fluxes is pri-
marily dictated also by SAT in bothwinters with turbulent
heat flux–SAT correlation coefficients of20.87 and20.74
for the winters of 2007 and 2008, respectively (.99%
confidence level for both winters). If the colder average
SAT in the 2008 winter is due to a direct influence of
storms, one would expect a stronger wind variance in this
winter compared to that of 2007. However, y02 in the 2008
winter is only about one-half of that in the 2007winter (6.4

FIG. 1. Time series of March-mean MLD from CTRL, averaged
over a central LS region (568–608N, 568–488W). The gray-shaded
areas represent the LS convection regimes categorized by
Gelderloos et al. (2013) based on several sources of direct MLD
observations (see text).
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Kim	et	al.	(2016)	

Simulated	MLD	

Es4mated	MLD	from		
Obs	(Gelderloos	et	al.	2013)	

FIG. 4. Time series of anomalous potential temperature (shading) and potential density (s2;
contoured at 0.01 kgm23; dashed lines shownegative values) within the central Labrador Sea from
(a) a compilation of hydrographic observations (Yashayaev 2007; Yashayaev andLoder 2009) and
(b) CONTROL. (c),(d) As in (a),(b), but for anomalous salinity. The anomalies are computed
relative to the 1960–2007 climatology at each depth level. CONTROL area averages were com-
puted on depth levels within the box region (568–498W, 568–618N) in the vicinity of the Atlantic
Repeat Hydrography Line 7 West (AR7W) section and include only grid cells where the ba-
thymetry exceeds 3300m.Model output fromMay of each year is used to reflect the spring timing
of hydrographic measurements, although the difference from annual-mean output is small.
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19	CORE-II	Hindcast	simula4ons	

then averaging these ensemble means. Because some sys-

tems provide hindcasts starting every year, while others
provided hindcasts every 5 years, two distinct multi-model

hindcast sets are made from different ensembles depending

on the start date.
The hindcasts are also compared against persistence

predictions. The persistence prediction for the n year

forecast period is taken as the AMOC averaged over the n
years immediately preceding the forecast start date.

4 Results

We compare the AMOC variability over the second half of

the 20th century from 10 different European decadal pre-

diction systems, including those from the MOHC, IFM-
GEOMAR, MPI, ECMWF, CERFACS and CMCC-INGV

(see Table 1). The maximum of the AMOC averaged over

the ocean syntheses from these 10 systems and the period
1959–2006 occurs at about 1,000 m depth and between

30!N and 45!N. We focus first on the AMOC at 45!N,

since we found the largest similarity in the long-term signal
around this latitude. As in previous studies (e.g. Cunning-

ham and Marsh 2010; Munoz et al. 2011) large differences

in the magnitude of the AMOC are present between the
different systems at 45!N (Fig. 2a) with values between

12.1 Sv for Had and 22.6 Sv for ECMWF averaged over

the period 1960–2001. However, the multi-system mean
AMOC strength (of 16.6 Sv at 45!N and 19.3 Sv at 30!N,

respectively in 2004) lies in the estimated range from

observations, e.g. of 18.7 ± 5.6 Sv at 26!N between 2004
and 2005 from the RAPID array (Cunningham et al.

2007) or of 15.5 ± 2.4 Sv at 41!N between 2004 and 2006

(Willis 2010).
The disagreement between the syntheses (Fig. 2a) is not

surprising considering that the model resolution, the

assimilation technique, and flux adjustments all potentially
affect the magnitude of the AMOC. However, the vari-

ability of the AMOC anomalies does show a consistent

signal. This is seen by normalizing the AMOC time series
to have the same mean and variance (Fig. 2b), revealing an

increase in the AMOC from 1960 to the mid 1990s and a

decrease thereafter. The linear trend over the period
1959–1995 is 1.6 standard deviations and is significantly

different to no trend above the 99 % level according to a

Mann–Kendall test (e. g. Yue et al. 2002). Additionally, all
individual syntheses show a positive trend (for the years

available, see Table 1) during this period, although the

trends are statistically significant above the 70 % level in
only 7 out of 10 individual systems. The linear trend over

the period 1995–2006 is -2.5 standard deviations and is

significantly different to no trend above the 99 % level
using a Mann–Kendall test. Additionally, all individual

syntheses show a negative trend (for the years available)

during this period, but statistically significant above the 70
% level in only 9 out of 10 systems.

The fact that these different syntheses suggest a com-

mon signal of AMOC variability is important because it
shows that the available observations produce a common

response when analyzed by a wide variety of models and

synthesis techniques (Table 1) but a crucial question is
whether the model signal is reliable? A direct comparison

of this AMOC variability to observations is not possible

due to the lack of direct observations. However, time series
of key variables which are thought to be related to the

AMOC (e.g., Latif et al. 2006; Curry et al. 1998; Häkkinen

and Rhines 2004; Lohmann et al. 2009) do exist, including
the North Atlantic Oscillation (NAO) (Hurrell 1995),

Labrador Sea (LS) convection (Kieke et al. 2006), Atlantic

SST dipole index (Latif et al. 2006) and subpolar gyre
(SPG) strength (Dibarboure et al. 2004). Model studies

show that these are strongly related to AMOC variations

(Latif et al. 2006; Curry et al. 1998; Häkkinen and Rhines
2004; Lohmann et al. 2009). We find considerable
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Fig. 2 a Time series of AMOC at 45!N and 1,000 m depth from the
syntheses of 10 decadal prediction systems (see Table 1) and b their
values after normalization to have the same mean and variance. The
black thick curve in b shows the multi-model mean, the black thin
curve is their linear trend for the periods 1959–1995 and 1995–2006,
and the grey shading the 5–95 % ensemble range of the syntheses.
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Fig. 15. Low-pass filtered, MMM time series of (top) AMOC maximum transport at

45°N, March-mean MLD, and SPG BSF; and (bottom) AMOC maximum transport at

45°N (same as in the top panel), AMOC maximum transport at 26.5°N, and SPG SSH.

The top panel also includes low-pass filtered NAO time series whose amplitude is

multiplied by a factor of two for clarity. MLD is calculated as an average for the LS –

Irminger Sea region defined as the area between 15◦–60◦W and 48◦–60◦N. The SPG BSF

and SSH represent averages for the SPG region defined by 15◦–60◦W and 48◦–65◦N. We

note that negative SPG BSF and SSH anomalies indicate strengthening of the cyclonic

SPG circulation. All time series are anomalies with respect to the 1958–2007 period.

A 7-year cutoff is used for the low-pass filter. The respective colored shadings denote

one standard deviation spread of the models’ time series from those of the respective

MMM. The spread for the AMOC transport at 45°N is not repeated in the bottom panel

for clarity. MMM does not include MRI-A. Units are Sv for AMOC and BSF; × 100 m for

MLD; and cm for SSH.

average for the LS – Irminger Sea region defined as the area between
15◦–60◦W and 48◦–60◦N, thus including the region extending from
the southeast LS to the Irminger Sea which contains the largest MLD
variability in the majority of the models (see Fig. 9). The SPG BSF and
SSH represent average transport and surface height for the SPG do-
main defined in Section 7. For NAO, we adopt the winter (December–
March) sea level pressure PC1 time series from the CORE-II data sets
as our index. The NAO index shows a stronger-than-normal subtropi-
cal high and a deeper-than-normal Icelandic low in its positive phase
(NAO+). We note that all models are subject to the same NAO index
because it is part of the forcing datasets. All time series are anoma-
lies with respect to the 1958–2007 period, and shadings denote one
standard deviation spreads of the models’ time series from those of
the respective MMM.

The figure shows several noteworthy features. First, changes in
MLD tend to lead changes in AMOC. This is particularly evident after
1980: deepening in MLD leads AMOC intensification by a few years
with the deepest MLDs and the largest AMOC transports occurring
in 1992–1993 and 1995, respectively. Second, the NAO time series
similarly lead those of AMOC, with changes in NAO and MLD tend-
ing to co-vary. There is a suggestion that NAO slightly leads MLD after
about 1990. Third, AMOC and SPG BSF and SSH anomalies appear to
be largely in-phase, noting that the negative BSF and SSH anomalies
indicate strengthening of the cyclonic SPG circulation. However, the
SPG SSH time series suggest that they tend to lead those of AMOC
by a few years. In Yeager (2015), these co-variations of AMOC and
SPG anomalies are shown to be associated with the bottom pressure
torque which emerges as the primary driver in the barotropic vor-
ticity equation responsible for decadal, buoyancy-forced changes in

the gyre circulation, thus providing AMOC and SPG coupling. Finally,
we note that the two AMOC time series do not show an appreciable
lead–lag relationship until about 1985. Thereafter, anomalies at 45°N
lead those at 26.5°N by about 5 years. A prominent example is the
emergence and strengthening of positive AMOC anomalies at 26.5°N
during the 1989–2000 period which follow a similar AMOC intensifi-
cation at 45°N that occurs during the 1984–1995 period.

To establish the lead–lag relationships between the AMOC index
time series and those of the MLD, SPG BSF, SPG SSH, and NAO, we
next calculate the correlation functions among these time series. The
resulting lead–lag correlations for each model are shown in Fig. 16
where the AMOC index leads for positive lags. The correlations are
obtained using the low-pass filtered anomalies with respect to the
1958–2007 period. The figure also includes the MMM correlation
function evaluated as the mean of the individual model correlations
as well as 95% confidence levels calculated using a parametric boot-
strap method (see Section 2 for details). As above, MLD and BSF time
series are evaluated as spatial averages for their respective regions,
and SSH spatial averages use the same domain as in BSF.

We first summarize our analysis considering the MMM correla-
tions shown as the black lines in Fig. 16. The maximum correlations
(≈ 0.75) occur when positive MLD anomalies, i.e., MLD deepening,
lead AMOC intensification by 2–3 years. As also suggested by Fig. 15,
the correlation coefficient between the AMOC index and the SPG BSF
time series is a maximum (≈ |0.7|) at lag of −1 to −2, again noting
that the negative correlations indicate in-phase strengthening and
weakening of AMOC and SPG. We see a similar relationship between
the AMOC index and the SPG SSH time series with the largest nega-
tive correlations of about 0.6 occurring when SSH leads by 2–3 years.
These lead–lag relationships between the AMOC index time series
and those of SPG BSF and SSH along with the time series plots of
Fig. 15 support the idea of monitoring the variations in the LS SSH as
a proxy for AMOC changes as suggested by Yeager and Danabasoglu
(2014). Lastly, we note that the NAO index leads the AMOC index by
2–4 years with a maximum correlation coefficient of about 0.6.

There are many differences among the individual correlation func-
tions, for example, in their correlation coefficient magnitudes as well
as in their lead–lag times for maximum correlations. We discuss only
a few of these differences here both to provide some examples of such
differences and to identify some models that depart from our MMM
characterization. Starting with the AMOC and MLD correlation func-
tions, we note that although INMOM also shows relatively strong cor-
relations when MLD leads AMOC, it is the only model which has its
maximum correlation when AMOC leads, indicating that MLDs con-
tinue to get deeper while AMOC begins to weaken. The maximum
correlations vary between about 0.45 and 0.9 among the models, with
ICTP at the low end and AWI, BERGEN, CNRM, INMOM, KIEL, MRI-
F, and NCAR at the high end of this range. The low correlations in
ICTP that are not statistically significant are likely due to low MLD
variability in the LS – Irminger Sea region (Fig. 9) where the time-
mean MLDs always remain very deep and the largest variabilities oc-
cur in the southern portion. In contrast with the rest of the models,
GFDL-GOLD, GISS, MRI-A, and NOCS show earlier transitions to nega-
tive correlations starting at lag of 0. Consequently, these models have
the largest negative correlation coefficients among the models. Al-
though there does not seem to exist any clear relationships between
the AMOC–MLD correlations and where the deepest MLDs occur in
the models, we note that in MRI-A and NOCS – two of the models with
earlier transitions to negative correlations – AMOC EOF1 anomalies
are very weak at 45°N, indeed negative as shown in Fig. 4. Continu-
ing with the AMOC and SPG BSF correlation functions, we find GISS2
and, to some degree, FSU distributions – both below the confidence
levels – difficult to interpret due to their pronounced oscillatory be-
havior with relatively small correlation coefficients. In BERGEN, IN-
MOM, and NCAR, the extrema in SPG transports are attained more
than 2 years after the extrema in AMOC. Not surprisingly, there are
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