US AMOC meeting 2017, Santa Fe, NM

Tracking Labrador Sea Water property signals along the Deep Western Boundary Current

Isabela Le Bras¹, Igor Yashayaev², John Toole¹ ¹ Woods Hole Oceanographic Institution ² Bedford Institute of Oceanography

Tracking LSW along the DWBC

Line W across-array velocity (2004–2014)

Variability at Line W

To what degree is the spreading of LSW in the DWBC affected by stirring?

Deep Labrador Sea Water production

Intense deep convection in the early-mid 90s.

Throughout 2000s layer thins, warms and gets saltier.

(Yashayaev 2007, Kieke and Yashayaev 2015)

dLSW properties along DWBC path

53N: Visbeck, Fischer, Handmann; Flemish Cap: Rhein, Mertens

dLSW properties along DWBC path

dLSW properties along DWBC path

dLSW trends in Line W moorings

 $+0.014\pm0.02^{\circ}$ C/year

TS property evolution at Line W moorings

In 2005 TS profiles are broadly distributed in TS space.

By 2013, the distribution is narrow and lacks signature of especially cold, fresh $\ensuremath{\mathsf{dLSW}}$

Analytical model to estimate time scales of advection and mixing

Analytical model to estimate time scales of advection and mixing

$$\frac{\partial \chi_b}{\partial t} + u \frac{\partial \chi_b}{\partial x} + \frac{1}{t_{mix}} (\chi_b - \chi_i) = 0$$

$$t_{adv} = L/u$$

$$t_{adv} \gg t_{mix} : \text{ High mixing}$$

$$t_{mix} \gg t_{adv} : \text{ Low mixing}$$

Relates to transit time distribution
(Waugh and Hall 2005)

Analytical solution for periodic signal

- Fit sinusoids: oscillation period, phase lag and relative amplitude
- Use analytical expression to find t_{adv} and t_{mix}

$$ightarrow t_{adv} = 4 - 6$$
 years $ightarrow t_{mix} = 2 - 5$ years

Forward model fit

> Propagate Labrador Sea data forward in time with Green's function

Minimize cost function to find t_{adv} and t_{mix}

$$ightarrow t_{adv} = 2 - 2.5$$
 years
ightarrow t_{mix} = 1.25 - 1.75 years

dLSW Transit Time Distributions

Good agreement with Smith et al. 2016 Corresponds to $u \approx 2 - 5 \ cm/s$, agrees with DWBC measurements

Estimating diffusivity

- *L*: DWBC width
- D: Distance between Labrador Sea and Line W

Elevated compared to estimate of $\kappa = 1000 \ m^2/s$ in eastern North Atlantic from tracer release experiment (Ledwell et al. 1998)

Conclusions

- Trace a shift in dLSW salinity, temperature and thickness along the western boundary
- Estimate travel time distribution
- Consistent with tracer studies and DWBC velocities
- First order role for both advection and stirring

"Tracking Labrador Sea Water property signals along the DWBC" Le Bras, Yashayaev, Toole; under review in JGR: Oceans

Posters

 Toole, Andres, Le Bras, Joyce, McCartney, Smethie
 "Moored Observations of the Deep Western Boundary Current in the NW Atlantic: 2004-2014"

 Le Bras, Jayne and Toole "Interaction between the Gulf Stream Northern Recirculation Gyre and the Deep Western Boundary Current – A model study"