

CMIP5 sea level projections

- * High mean AND wide spread in the NW Atlantic
- * Dynamic sea level rise (DSL) is correlated with global mean across models

AMOC and DSL are closely coupled in models...

* Future dynamic sea level rise is closely related to AMOC weakening...

$$\vec{v} = \frac{g}{f}\vec{k} \times \nabla\vec{\eta}$$

* And models suggest that DSL is a proxy of AMOC strength over the historical record (e.g. Bingham and Hughes 2009, McCarthy et al. 2015).

70-year DSL change at New York City (10 GFDL models; 1%/yr CO₂ increase)

... but observations are dominated by local winds

 * Alongshore winds explain
 50-60% of DSL
 variance north of
 Cape Hatteras 1970-2012 observed annual mean sea level anomaly/alongshore wind correlation

* Wither AMOC?

Community Earth System Model Large Ensemble (CESM-LE; Kay et al. 2015)

1. Calculate scalars

2. Partition externally-forced and internal components

3. Compare to fully Bayesian (probabilistic) tide gauge reconstruction [Piecuch et al. (2017), JGRO]

Partitioning forced and unforced variability

Partitioning winds and AMOC

$$\eta^n = \alpha^n \tau^n + \beta^n \psi^n + \varepsilon^n(t).$$

- * Apply 5 year high pass filter
- Regress each simulation (n)

Future work

* Examine mechanisms underlying spread in climate model representation of: AMOC change **and** its coastal sea level expression

* Remove land motion and global mean sea level change by incorporating other data sources into Bayesian algorithm (e.g. GPS, altimetry)

Conclusions

- In CESM, Northeast US dynamic sea level changes can be partitioned into: 1) an interannual, internal, local wind-driven component and 2) a multidecadal-to-centennial, externally-forced, component that is tightly coupled to the overturning circulation
 - * Externally forced AMOC/DSL scaling (~-1.8 cm/Sv) is stationary over the 1920-2100 period
- * Observation-based explanations highlighting the role of winds are not inconsistent with large 21st century, AMOC-coupled changes in climate models; robust linkages require more time to observe or stronger external forcing (see also Woodworth et al. 2014)
- * Northeast US sea level is a good metric of AMOC over multi-decadal timescales, especially in the presence of strong external forcing
 - * Obscured over decadal timescales by local winds and unrelated internal variability; may be able to improve by filtering wind-forced interannual "noise"
 - * Assessment of AMOC metrics that include locations south of Cape Hatteras are hindered by CESM's poor representation of South Atlantic Bight DSL

Thanks to:

- * NASA award #NNH16CT01C; NSF award #1558966
- * Steve Yeager (NCAR), the CESM Large ensemble project and the NCAR ESG repository
- * NOAA GFDL

MDT CESM/AVISO

Mean sea level drivers

Local mean sea level (LSL) <u>"COMPONENTS"</u>

- Oceanographic
- Density changes
- Mass
 rearrangements

Mass exchange

- Ice sheet mass change
- * Glacier mass change
- * Land water storage

Solid-earth

- * Isostatic adjustment
- Subsidence

16 CMIP5 model projections (2090-1990)

DYNAMIC SEA LEVEL

Little et al. 2015

Reconciling models and data: difficulties

* Three key issues:

- * Tide gauge record quality/length
 * Use probabilistic, gap-filling reconstruction
- * Tide gauge records include other processes
 - * Compare detrended alongshore averages
- * Internal variability
 - * Use climate model ensemble

Bayesian tide gauge reconstruction

PROCESS LEVEL—**OBSERVATION LEVEL**—
$$y_k - bt_k = r(y_{k-1} - bt_{k-1}) + e_k$$
 $z_k = H_k y_k + d_k + F_k \ell$ $e_k \sim \mathcal{N}(\mathbf{0}_N, \Sigma), \Sigma_{ij} = \sigma^2 e^{-\varphi |\boldsymbol{x}_i - \boldsymbol{x}_j|}$ $d_k \sim \mathcal{N}(\mathbf{0}_{M_k}, \delta^2 \mathbf{I}_{M_k})$ $b \sim \mathcal{N}(\mu \mathbf{1}_N, \pi^2 \mathbf{I}_N)$ $\ell \sim \mathcal{N}(\nu \mathbf{1}_M, \tau^2 \mathbf{I}_M)$

APPLY BAYES' RULE-

 $p\left(\boldsymbol{y},\Theta \middle| \boldsymbol{z}
ight) \propto p\left(\boldsymbol{z} \middle| \boldsymbol{y},\Theta
ight) \cdot p\left(\boldsymbol{y} \middle| \Theta
ight) \cdot p\left(\Theta
ight)$

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

"Oceanographic" sea level rise uncertainty at New York City

CMIP5 local sea level uncertainty

... but observations are dominated by local winds

II. Wind effects on regional sea level

- Strong anti-correlation
 between SL in SHAL & local alongshore winds
- * Physical framework—

[Piecuch et al. (2016), J. Climate]