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Potential mechanisms associated with AA 
 

 1. AA has been suggested as a driver of recent cooling trend in mid-latitudes, as well as responsible 
for increased jet stream meandering, blockings and associated extreme events (e.g., Cohen et al. 2014, 
Francis and Vavrus 2012, 2015). However, in observations, attribution of the recent trends to AA is 
debated and hampered by large internal variability (e.g., Barnes 2013, Screen and Simmonds 2013, 
Barnes and Screen 2015, Overland et al. 2015). 

 2. Arctic sea ice anomalies can perturb the stratospheric polar vortex through changes in upward 
planetary wave propagation and eddy-mean flow interactions (e.g., Kim et al. 2014, Peings and 
Magnusdottir 2014, Jaiser et al. 2016, Sun et al. 2015, King et al. 2016, Nakamura et al. 2016). 

 3. A “warm Arctic–cold continent pattern” forced via stationary Rossby waves has been identified in 
observations and models (e.g., Honda et al. 2009, Mori et al. 2014, Kug et al. 2015).  

 4. “Tug of war” between the NH zonal mean climate response to greenhouse gases and Arctic sea 
ice loss as projected at the end of the 21st century. The direct dynamical effect of pan-Arctic sea ice loss 
is a negative circulation feedback that weakens the impact of the extratropical circulation response to 
greenhouse warming by pushing the jet equatorward and dynamically warming the polar stratosphere 
(Deser et al. 2015, Tomas et al. 2016, Blackport and Kushner 2017)  
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Cohen et al. (2014) 



2. Arctic sea ice anomalies can perturb the stratospheric polar vortex through changes in upward 
planetary wave propagation and eddy-mean flow interactions (Kim et al. 2014, Peings and Magnusdottir 
2014, Jaiser et al. 2016, Sun et al. 2015, King et al. 2016, Nakamura et al. 2016). 
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2. Arctic sea ice anomalies can perturb the polar vortex through changes in upward planetary waves 
propagation and eddy-mean flow interactions (Kim et al. 2014, Peings and Magnusdottir 2014, Jaiser et 
al. 2016, Sun et al. 2015, King et al. 2016, Nakamura et al. 2016). 
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Ø  No WACS pattern  
Ø  Polar cap tropospheric warming in model not as strong as in observations 
Ø  Cooling of stratosphere is well represented in summer autumn and spring 
Ø  No significant warming of polar stratosphere in late winter 

à weak (and too late) stratospheric response in ECHAM6 
à Deficits in representation of planetary wave forcing or propagation in ECHAM6?  

ECHAM6 low ice minus high ice period à No WACS pattern 



Location of Vortex in winter 
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The Arctic stratospheric polar vortex shifted persistently towards the 
Siberian continent in late winter (February) over the period 1980-2009.
(Zhang, Tian, et al, Nature Climate Change, 2016) 
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3. A “warm Arctic–cold continent pattern” forced via stationary Rossby waves has been identified in 
observations and models (Honda et al. 2009, Mori et al. 2014, Kug et al. 2015).  

Kug et al. 2015 



4. “Tug of war” between the NH zonal mean climate response to greenhouse gases and Arctic sea ice 
loss as projected at the end of the 21st century.  

The direct dynamical effect of pan-Arctic sea ice loss is a negative circulation feedback that weakens the 
impact of the extratropical circulation response to greenhouse warming by pushing the jet equatorward 
and dynamically warming the polar stratosphere (Deser et al. 2015, Tomas et al. 2016, Blackport and 
Kushner 2017).  

 Blackport and Kushner (2017) 
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Open questions associated with the mechanisms 
 

 1. What causes non-linearities in the response associated with polarity, amplitude and pattern of 
sea ice anomalies ? (Pethoukov and Semenov 2010, Peings and Magnusdottir 2014, Semenov and Latif 
2015) 

 2. What portion of AA is driven by sea ice decline and what is its role in recent trends of extreme 
weather events ? (Screen 2014, Screen et al. 2014, Perlwitz et al. 2015) 

 3. Future evolution of the mid-latitude dynamics including jet streams/blocking/extreme weather 
events ? (Ayarzagüena and Screen 2016, Francis et al. 2012, Hassanzadeh and Kuang 2015, Harvey et 
al. 2014, Screen 2014, Barnes and Polvani 2015, Cattiaux et al. 2016, Peings et al. 2017, Vavrus et al. 
2017) 

 4. Importance of stationary waves in the upward propagation mechanism? Causes for constructive 
vs destructive interference with the background climatological flow that lead to different stratospheric 
response? (Smith et al. 2011, Peings and Magnusdottir 2014, Sun et al. 2015) 

 5. Causal relationship between BK sea ice and the Warm Arctic Cold Siberia (WACS) pattern? 
(Sato et al. 2014, Mc Cusker et al. 2016, Sorokina et al. 2016) 
 
 
 
 

 

 

 

 



1. What causes non-linearities in the response associated with polarity, amplitude and pattern of sea ice 
anomalies ? (Pethoukov et al. 2010, Peings and Magnusdottir 2014, Semenov and Latif 2015) 

Semenov and Latif (2015) 
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Perlwitz et al. (2015) 

AMIP : SST + sea ice 
 
SIC : sea ice only  
 
LTOC : long-term 
oceanic trend 
  
DOV : decadal 
oceanic variability 

2. What portion of AA is driven by sea ice decline and what is its role in recent trends of extreme weather 
events ? (Screen 2014, Screen et al. 2014, Perlwitz et al. 2015) 



3. Future evolution of the mid-latitude dynamics including jet streams/blocking/extreme weather events ? 
(Ayarzagüena and Screen 2016, Francis et al. 2012, Hassanzadeh and Kuang 2015, Harvey et al. 2014, 
Screen 2014, Barnes and Polvani 2015, Cattiaux et al. 2016, Peings et al. 2017, Vavrus et al. 2017) 

 

  

 

 

 

Peings et al. (2017) – 
see poster session 
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4. Importance of stationary waves in the upward propagation mechanism? Causes for constructive vs 
destructive interference with the background climatological flow that leads to a different stratospheric 
response? (Smith et al. 2011, Peings and Magnusdottir 2014, Sun et al. 2015). What is the role of 
stratospheric internal processes? 
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6. Causal relationship between BK sea ice and the Warm Arctic Cold Siberia (WACS) pattern ? (Sato et 
al. 2014, Mc Cusker et al. 2016, Sorokina et al. 2016) 

 

 

 

 

Sorokina et al. 2016 
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Potential modeling studies to tackle these questions 

● Non-linear response to sea ice anomalies, Warm Arctic Cold Continents pattern  
 

Set of coordinated AGCM experiments forced with a variety of patterns, amplitudes 
and both polarities in sea ice anomalies 

 
● Role of sea ice decline in past trends of AA and mid-latitude climate 

 
AMIP simulations forced with observed SIC decline 

  
● Role of the stratosphere and mechanisms  
 

Set of high-top simulations, possibly compared with corresponding low-top versions 
 
● Dependence on background conditions, role of linear interference : AGCM studies 
including SST (AMO, PDO) or others sources of variability (snow, QBO, etc …) 
 
Matrix of AGCM simulations combining sea ice anomalies with other boundary forcings 

(PDO, AMO, snow, QBO, etc …) 
 

●  Other issues:  
 Prescribe heat flux (instead of SIC) to bypass limitations of AGCM studies driven 
  with prescribed SIC/SST 
 Use fully-coupled models for sea ice loss experiments (expensive),  
 Prescribe AA and not only sea ice anomalies, ... 
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