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Will the Modern Pattern of Ocean CO2 Uptake Persist?

Mean Annual Sea-Air CO2 Flux

Carbon Sink mol C m -2 yr - Carbon Source

after Takahashi et al., 2002, 2009
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Natural Variability in Anthropogenic Carbon Storage

NAQO Variability Modulates Subtropical Mode Water CO» Sink

e Bates et al., 2002 - Letters to Nature

e Gruber et al., 2002 - Science

e | evineetal., 2011 - GBC
Changes in mode water Canthro inventories are primarily due to changes in water
mass volumes driven by variations in water mass transformation rates rather than
local air-sea CO2 exchange.

e Bates 2012 - Biogeosciences
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Natural Variability in Anthropogenic Carbon Storage
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Kuroshio Extension Jet Stability and Mode Water Biogeochemistry Variations
e Oka et al., 2015 - J Oceanogr \
Global Perspective
e DeVries et al., 2017 - Letters to Nature
Variability in the vigor of the shallow overturning
circulation (up to 50%) can lead to major changes
IN anthropogenic carbon uptake between decades.
For example, Southern Ocean COz2 uptake has

increased by >50% due to reduced outgassing of
natural COz2.

AOU (umol/kg)




Natural Variability in Anthropogenic Carbon Storage

NAQO Variability Modulates Subtropical Mode Water CO» Sink
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circulation (up to 50%) can lead to major changes s 2 455008
in anthropogenic carbon uptake between decades. Rl —H

For example, Southern Ocean CO2 uptake has o O O
increased by >50% due to reduced outgassing of (20005)

natural COz2. .




Shallow Overturning Circulation & Carbon Storage

The shallow overturning circulation
(0<27.0) and intermediate waters
(27<0<27.5) contain as much as
63-86% of the global anthropogenic
carbon inventory, yet occupy only
27.1% of the global ocean volume.

EL

WBC+Eddies =~ WM formation Buoyancy gain  Heat loss Evaporation
Upwelling

ludicone et al., 2016 - Sci. Reports



Shallow Overturning Circulation & Carbon Storage

The shallow overturning circulation

EL

(0<27.0) and intermediate waters
(27<0<27.5) contain as much as
63-86% of the global anthropogenic
carbon inventory, yet occupy only
27.1% of the global ocean volume.
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The Role of Nonlocal Anthropogenic Carbon Fluxes
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The Role of Nonlocal Anthropogenic Carbon Fluxes
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Low Buffer
Capacity This may suggest a reduction in the
. 207 role of sea-air fluxes during
% northward transport over time.
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T>> carbon characteristics may become
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This Can Be Summarized Best Using Cookie Monster...

Anthropogenic carbon is more concentrated in low latitude waters due to
shallower mixed layers and more efficient carbon uptake (or higher buffer capacities)

High Buffer Capacity = Low Buffer Capacity =
Big Cookie Monster Small Cookie Monster
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This Can Be Summarized Best Using Cookie Monster...

Anthropogenic carbon is more concentrated in low latitude waters due to
shallower mixed layers and more efficient carbon uptake (or higher buffer capacities)

Growth in the Revelle Factor may lead to a decline in the meridional DIC gradient
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Gas Exchange 10%

Consideration of Natural Carbon Cycling
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Mean Annual Sea-Air CO2 Flux mol C m=2 yr-1

How Does Ocean Physics
Influence Carbon Export?
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Mean Annual Sea-Air CO2 Flux mol C m2 yr-1

How Does Ocean Physics

Influence Carbon Export?
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Mixed Layer Depth Constraints on Carbon Export

Winter MLD (m)
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Take Home Messages

1. Anthropogenic carbon storage mediated
by the shallow overturning circulation is
heavily dependent on mode and
intermediate water formation rates.

2. Anthropogenic carbon uptake in
subtropical source waters is important
and may begin to play an even larger

role in anthropogenic carbon storage,
relative to subpolar waters.

3. Consideration of future ocean circulation
and biological changes is needed.
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