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Outline

Brief overview of the circulation in the vicinity of Denmark Strait
and the shipboard data used in the study

Aspects of the densest overflow water exiting the strait and its
relationship to the subtropical inflow

Interannual variability of the exchange
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Shipboard data used in the study (2004-2013)
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Mean Kogur Sections

Average Kogur Section 2004 - 2013
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Transports at the Kogur line
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Transports at the Kogur line

(a) North Icelandic Jet
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Pathway of the NIJ and NIIC



Absolute geostrophic velocity (cm/s, color) August 2009
overlain by potential density (kg/m?, contours)
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Metrics

poleward flow  frontal strength

|
&

o) o
=) =

B
(e}

)]
=2

D
)

n
(e}

Baroclinic shear (cm/s)
W
(=

|
—
(e}

=
L
=
o
=
hd
=
)
o
o
=
5
=
[1:]
=

section number




Metrics

inshore salinity poleward flow  frontal strength
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Metrics
— NIIC

inshore salinity poleward flow  frontal strength
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Metrics

= NIIC

inshore salinity poleward flow  frontal strength

|
P
(=]

|
[
(o]

|
no
[

-
c
o
o

=

.
5]
D
2
5]

e
w

£
-

=
=

w

w

Maximum poleward flow (cm/s)
Baroclinic shear (cm/s)

section number

Sometimes the NIJ is associated with the NIIC, sometimes it iSn’t




Bathymetric considerations
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Bathymetric considerations
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Overall impression:

The NIJ appears to be coupled to the NIIC when the two
are in close geographical proximity to each other.

Even when they are de-coupled, the NIJ is flowing adjacent
to a (weaker) inflow of warm water.




Interannual variability:

subtropical inflow vs. dense outfiow



Depth-space

Kogur Occupations Potential Temperature {color, °C) overlain by Potential Density (contours, kg/m?)
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Anomaly in density-space

Kogur Occupations Potential Temperature Anomaly (color, °C) overain by Potential Density {contours, kg/m®)

132 134 136 133 140 142 144 146 143

27 26 2523 23 22 2

134 133 132131 1380 179 173 177 176 175 174 173 39 33 37 36 35 34 33 32 A aq
a

200 200 200
E
£ 400 400 400
5
bl
% 500 G500 G500
@ Oct 2008 Feb 2011

800 &00 800

1000 1000 1000

a 20 40 &0 80 a 20 40 &0 &0 a 20 40 & &0
Distance (km) Distance (km) Distance (km) Distance (km)
I I I 1
-0.200 -0.175 -0.150 -0.125 -0.100 -0.075 -0.050 -0.025 0000 0025 0050 0075 0400 0425 0450 0475 0200 0225 0250
% 35 34 33 32 31 2 44 43 42 4 40 39 33 a7 4748645 4341 2 4140393337 36 35 34 33 32 39 33 37 36 35 34 33 32 A
O + ¥ ¥y . X h 4 h Y. X 0 0 )

200 200 200
E
£ 400 400 400
5
he]
£ 500 G500 500
3]
)

800 800 500

1000 1000 1000

a 20 40 &0 &0 Q 20 40 &0 &0

Distance (km) Distance (km) Distance (km) Distance (km)




NIJ water mass
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Changes in the NIJ water
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Longer term interannual variability
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Longer term interannual variability
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Longer term interannual variability

35.25 34.925

Aspects to consider:
1. The curves are nearly in phase
2. The outflowing salinity is ~0.2 fresher

3. The salinity fluctuations of the inflow
are much greater than the outflow
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1. Variations of the inflow and outflow are in phase
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2. Need to freshen ~0.5 Sv of inflow by 0.2
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This requires approximately 100 mSv of freshwater to mix with the inflowing salinity
Possibilities:

1. Precipitation
2. Liquid freshwater flux from EGC
3. Solid freshwater flux from EGC
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2. Need to freshen ~0.5 Sv of inflow by 0.2

This requires approximately 100 mSyv of freshwater to mix with the inflowing salinity
Possibilities:

1. Precipitation
2. Liquid freshwater flux from EGC
3. Solid freshwater flux from EGC

1. Precipitation an order of magnitude too small
2. Offshore flux of liquid freshwater is O(50 mSv) (Havik et al., 2017)

3. Offshore flux of solid freshwater is O(50 mSyv) (Dodd et al., 2009)
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3. Salinity fluctuations of NIJ much smaller than NIIC

Possibilities:

Precipitation What about this?

1.
2. Liquid freshwater flux from EGC .
3. Solid freshwater flux from EGC Cannot evaluate this
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1-D mixing model

aS/0t=SrE/H

S, = reference salinity

E = anomaly of E-P
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1-D mixing model

dS/0t=SrE/H

S, = reference salinity
E = anomaly of E-P
Assume H = 500m
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1-D mixing model

dS/0t=SrE/H

S, = reference salinity
E = anomaly of E-P
Assume H = 500m

1w W

’ -
2BW 2% 1w 17w 15W

E-P anomaly

1990 1995 2000 2005 2010 2015
year

1990 1995 2000 2005 2010 2015
year




If E-P determines the outflow salinity variations, what determines the inflow salinity variations?

And why are the inflow and outflow in phase?



If E-P determines the outflow salinity variations, what determines the inflow salinity variations?

And why are the inflow and outflow in phase?

As demonstrated by previous studies, the wind stress curl over the subpolar gyre
helps dictate the supply of subtropical water into the Nordic Seas

Subpolar Gyre; Subpolar Gyré,;
: strong positive | eak positive wingi
p, ind stress curl_g . stress curlgé

Hakkenin et al. (2011)

decreased inflow increased inflow
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E-P anomaly
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Wind stress curl anomaly averaged over the subpolar gyre

This implies that the large-scale weather patterns that control the low frequency
variability of the wind stress curl over the subpolar North Atlantic also influence
the E-P fields over the Iceland Sea
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This does not tell us how fast the overturning loop is, but:

1. The E-P imprint on the NIJ seems to happen within 1 year

2. The flushing time of the dense water reservoir for 0.5 Sv and 500m is 1 year

3. With a modest advective speed of 1 cm/s the advective time from the dense

water reservoir to the NIJ is less than 1 year
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to each other when the bottom topography steers them close together.
Even when they are separate, there is a poleward flow inshore of the NIJ.
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Summary

As the NIJ and NIIC flow along the north side of Iceland they appear to “lock”
to each other when the bottom topography steers them close together.
Even when they are separate, there is a poleward flow inshore of the NIJ.

The combination of liquid and solid freshwater flux from the EGC can account
for the net freshening of the NIIC to the NIJ as part of an overturning loop

involving the densest NIJ water.

The interannual variability of the inflow salinity is dictated by wind stress curl
over the subpolar gyre; the variability of the outflow can be explained by
in-phase changes in E-P over the Iceland Sea.




