Decadal Variability & Impact of the Kuroshio Extension System

Bo Qiu, Shuiming Chen & Niklas Schneider

Department of Oceanography, University of Hawaii, USA

Ocean Carbon Hot Spots Workshop, MBARI, 25-26 September 2017

KE has the highest mesoscale eddy variability in the Pacific Ocean

KE has the highest low-frequency circulation variability in world oceans

Outlines

- Observed decadal variability introducing KE index
- KE decadal variability as "externally" wind-forced response
- Impact on subtropical mode water & regional SST gradient
- Mechanism underlying the decadal KE variability

Yearly maps of bi-weekly paths of the Kuroshio/KE jet

Alternation between stable versus unstable states

Dynamically stable vs. unstable phases of the KE system

Other dynamical quantities representing the decadal KE variability

Typical yearly SSH patterns in unstable/contracted vs. stable/ elongated phases

Forming of a comprehensive index representing the KE variability

KE index: represented well by SSH anomalies in the southern RG box (31-36°N, 140-165°E)

Implications

- Examining KE index becomes equivalent to examining SSH anomalies in this key box
- Dynamically, it is easier to explore SSH changes than circulation/eddy variations
- Midlatitude SSH changes are largely governed by wind-forced baroclinic adjustment

Decadal KE variability lags the negative PDO index by ~ 3 years (r = 0.74)

- Center of PDO wind forcing is in eastern half of the N Pacific basin
- - PDO corresponds to a weakened Aleutian Low that generates + SSHAs through Ekman convergence
- 3~4-yr lag is the cross-basin adjustment time

Mantua et al. (1997, BAMS)

Connections between PDO forcing, cross-basin SSH adjustment & KE index

Quantifying the KE index using a wind-forced linear vorticity model

• Rather than specific climate modes, the proxy KE index is governed by rind . forcing along the 32°-36°N band across the North Pacific basin:

$$\frac{\partial h}{\partial t} - c_R \frac{\partial h}{\partial x} = -\frac{1}{\rho} \nabla \times \left(\frac{\boldsymbol{\tau}_{wind}}{f}\right)$$

• Hindcast of KE index using ECMWF interim Ekman pumping data along the Rossby wave characteristic:

Typical semi-monthly float distributions since the start of the Argo program

Float/XCTD/XBT-derived temperature profiles in the KE recirculation gyre

- STMW is characterized by Q < 2 x 10⁻¹⁰ m⁻¹s⁻¹ below the ML
- Deep wintertime ML depth leads to thick STMW formation
- ML depth & STMW formation modulate on decadal timescales

No clear relationship between wintertime ML depth and heat flux anomalies

Wintertime ML depth changes are controlled by the KE dynamical state

Factors controlling the late winter mixed layer depth

- Let the fall season upper ocean stratification be N and let surface cooling be Q(t) < 0.
- Convective ML depth *D* in this case can be estimated from heat conservation in the upper ocean:

• Convective ML depth depends not only on the cumulative heat loss, but also on the pre-conditioning stratification, *N*.

Qiu & Chen (2006, JPO)

KE dynamical state can alter upper ocean stratification efficiently

PV values on 25.4 σ_{θ} surface (~250m, STMW core) observed by profiling floats

13

15

11

Kuroshio/KE supply heat to overlying atmosphere & anchor stormtracks

Time-mean net surface heat flux from air to ocean (W/m²; Cronin et al. 2009)

DJF 700mb rms v'T' fluxes indicative of stormtracks variability (Nakamura et al. 2004)

zero wind-stress-curl line/ stormtracks

KE dynamic state affects regional SST & cross-front SST gradient

Feb-March SST maps

Basin-scale wind stress curl response to the time-varying KE system

zero wind-stress-curl line/stormtracks

- A positive KE index (i.e., warmer SST & stronger SST front) favors poleward migration of stormtracks/zero wind stress curl line
- This migration causes a dipolar wind stress curl anomaly in 31-36°N band: + in eastern basin

Anomalous wind stress curls regressed to the KE index of 1977-2012

half of an adjustment cycle: ~5 yr across the Pacific basin (Qiu et al. 2014; JC)

Summary

- KE dynamical state (i.e. EKE level, path latitude, & KE jet/RG strengths) is dominated by decadal variations.
- SSH anomalies in 31-36°N, 140-165°E provide a good index for decadally-varying KE system; variations of this index are determined by basin-wide wind forcing.
- Decadal KE variability affects STMW properties, SST, & overlying stormtracks.
- A stable KE state induces overlying-high and downstreamlow SLP anomalies. This oceanic feedback favors a delayed negative feedback variability with a ~10-yr period.

Recommendation

Following the 2013-14 PDO transition, KE is switching from a stable to an unstable dynamical state. It is timely to conduct a multi-disciplinary Carbon Hot-Spots field campaign to elucidate BGC-physical interactions on airsea CO₂ exchange & carbon export.

Basin-scale wind stress curl response to the time-varying KE system

zero wind-stress-curl line/stormtracks

Anomalous wind stress curls regressed to the KE index of 1977-2012

NDJFM rainfall difference between +/- KEI

- A positive KE index (i.e., warmer SST & stronger SST front) favors poleward migration of stormtracks/zero wind stress curl line
- This migration causes a dipolar wind stress curl anomaly in 31-36°N band: + in eastern basin
- Consistent evidence from TRMM rainfall data (Ma et al. 2015); potential impact on N America

Decadal KE variability lags the NPGO index by 2~3 yrs (r = 0.83)

Di Lorenzo et al. (2008, GRL)