# The Vulnerability, Impacts, Adaptation, and Climate Services (VIACS) Advisory Board for CMIP6

## Building bridges between the Modeling and Applications communities





<sup>1</sup>NASA Goddard Institute for Space Studies, New York City <sup>2</sup>Columbia University Center for Climate Systems Research <sup>3</sup>Climate Service Center, HZG, Hamburg



### **VIACS Advisory Board - Overview**

Designed to help form more coherent and productive link between the climate modeling community and users of CMIP6 outputs from the applications community.

- ➤ Facilitates two-way communication around science and application goals:
  - construction of model scenarios and simulations
  - informed use of model outputs
  - design of online diagnostics, metrics, and visualizations of relevance to society.

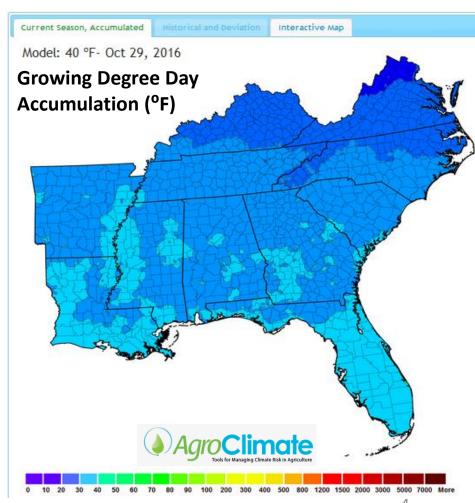
Endorsed by CMIP6 and PROVIA



### Vulnerability, Impacts, Adaptation

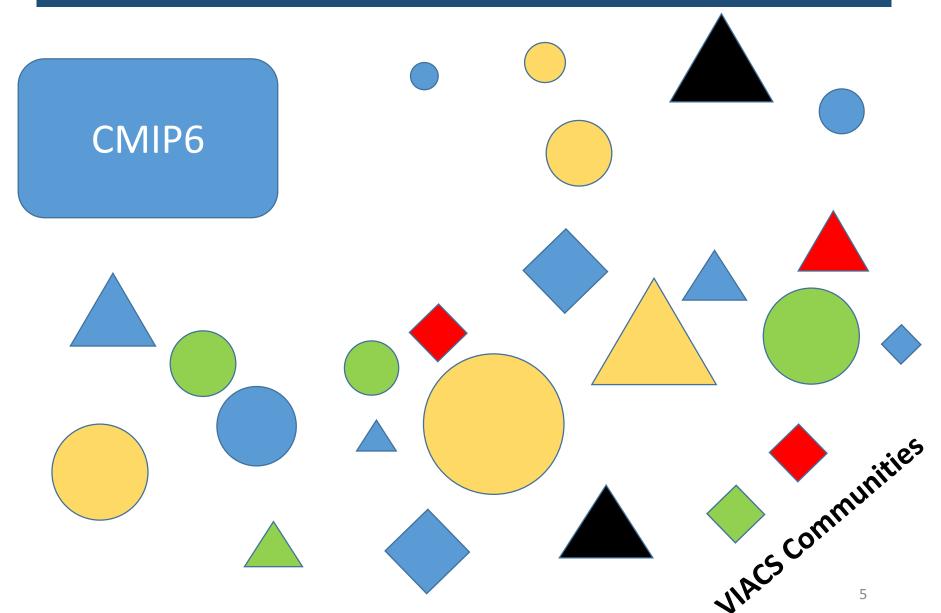
## Charged with understanding how climate changes affect natural and human systems

#### > VIA Sectors:


- Agriculture
- Forestry
- Energy
- Water Resources and Hydrology
- Oceans/Fisheries
- Coastal
- Biomes/Ecology
- Urban
- Health
- Infrastructure/Transportation
- Projects and Programs:
  - TGICA, CORDEX, ICONICS
  - WCRP Working Group on Regional Climate
  - ISI-MIP, AgMIP, WaterMIP
  - Others...

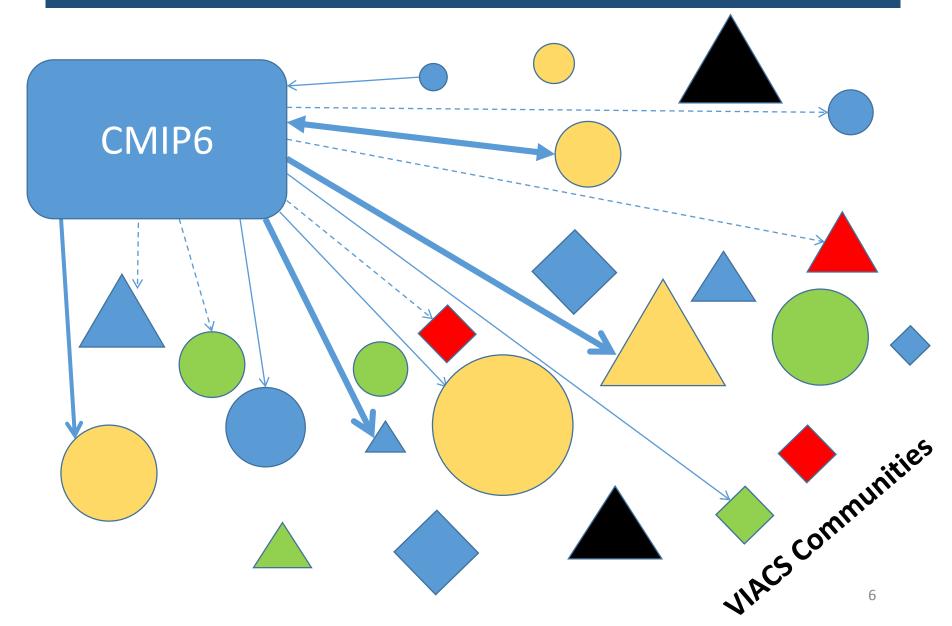


#### **Climate Services**


### Operationalizes climate and VIA information as user-oriented products and tools.

- Climate Service Organizations:
  - **Public Agencies**
  - **Private Organizations**
  - **Academic Institutions**
- Projects and Programs:
  - Climate Services Partnership
  - Global Framework for Climate Services
  - Others...




#### **VIACS Community is Diverse and Largely Independent**

Different regions, projects, sectors, scales, organization levels




### VIACS Community is Diverse and Largely Independent

Interactions with CMIP6 diverse, difficult and inefficient



## **VIACS Advisory Board**



## **VIACS Advisory Board**

| Name                       | Community         | Institution                                                   |
|----------------------------|-------------------|---------------------------------------------------------------|
| Alex Ruane (co-chair)      | Agriculture/AgMIP | NASA Goddard Institute for Space Studies, USA                 |
| Claas Teichmann (co-chair) | Climate Services  | Climate Service Center, Hamburg, Germany                      |
| Nigell Arnell              | WaterMIP          | University of Reading, UK                                     |
| Tim Carter                 | TGICA             | Finnish Environment Institute (SYKE), Finland                 |
| Kristie Ebi                | ICONICS/Health    | University of Washington, USA                                 |
| Katja Frieler              | ISI-MIP           | Potsdam Institute for Climate Impacts Research, Germany       |
| Clare Goodess              | WGRC              | University of East Anglia, UK                                 |
| Bruce Hewitson             | CORDEX            | University of Cape Town, South Africa                         |
| Radley Horton              | Urban/Coastal     | Columbia University, USA                                      |
| Sari Kovats                | Health            | London School of Hygiene and Tropical Medicine, UK            |
| Heike Lotze                | Oceans/Fisheries  | Dalhousie University, Canada                                  |
| Linda Mearns               | ICONICS           | National Center for Atmospheric Research, USA                 |
| Antonio Navarra            | Climate Services  | Istituto Nazionale di Geofisica e Vulcanologia, Italy         |
| Dennis Ojima               | Land Ecosystems   | Colorado State University, USA                                |
| Keywan Riahi               | Energy/IAMs       | International Institute for Applied Systems Analysis, Austria |
| Cynthia Rosenzweig         | PROVIA/AgMIP      | NASA Goddard Institute for Space Studies, USA                 |
| Matthias Themessl          | Climate Services  | Climate Change Centre Austria, Austria                        |
| Katharine Vincent          | Climate Services  | Kulima Integrated Development Solutions, South Africa         |

## **VIACS Advisory Board**

Geosci. Model Dev., 9, 3493–3515, 2016 www.geosci-model-dev.net/9/3493/2016/ doi:10.5194/gmd-9-3493-2016 © Author(s) 2016. CC Attribution 3.0 License.





## The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB v1.0) contribution to CMIP6

Alex C. Ruane<sup>1</sup>, Claas Teichmann<sup>2</sup>, Nigel W. Arnell<sup>3</sup>, Timothy R. Carter<sup>4</sup>, Kristie L. Ebi<sup>5</sup>, Katja Frieler<sup>6</sup>, Clare M. Goodess<sup>7</sup>, Bruce Hewitson<sup>8</sup>, Radley Horton<sup>9</sup>, R. Sari Kovats<sup>10</sup>, Heike K. Lotze<sup>11</sup>, Linda O. Mearns<sup>12</sup>, Antonio Navarra<sup>13</sup>, Dennis S. Ojima<sup>14</sup>, Keywan Riahi<sup>15</sup>, Cynthia Rosenzweig<sup>1</sup>, Matthias Themessl<sup>16</sup>, and Katharine Vincent<sup>17</sup>

➤ Motivation, initial activities, and plans for VIACS Advisory Board

# VIACS Advisory Board Engagement with CMIP6 Variable Design

#### 900+ CMIP5 Variables assessed for VIACS applications

- Necessary variables for most applications already exist
- Determined priorities strong desire for more validation studies
- Identified complete sets needed to allow particular applications (e.g., ocean ecosystems requires many unique variable sets)
- Variables may now be downloaded from the CMIP6 Data Request according to community (e.g., several AgMIP packages)

|                                         |                           |                                          |              | Variable Set Requests/Categorization |     |        |                      |
|-----------------------------------------|---------------------------|------------------------------------------|--------------|--------------------------------------|-----|--------|----------------------|
|                                         |                           |                                          |              |                                      | CSP | Arctic | FISH-MIP<br>FISH-MIP |
|                                         |                           |                                          |              | AgMIP                                |     |        |                      |
| Variable Category                       | Time Resolution           | Long Name                                | <u>Units</u> |                                      |     |        |                      |
| 2(e) Monthly land bio                   | geochemistry, soil and la | and cover data                           |              |                                      |     |        |                      |
| CMOR Table Lmon: Monthly M              |                           |                                          |              |                                      |     |        |                      |
| Physical, Vegetation, Soil, and I       | Biogeochemical Variables  |                                          |              |                                      |     |        |                      |
| nysical, Vegetation, Soil, and<br>PLmon | monthly mean              | Moisture in Upper Portion of Soil Column | kg m-2       | 2                                    | 2   | 0      | 0                    |
|                                         | monthly mean              | Total Soil Moisture Content              | kg m-2       | 1                                    | 1   | 0      | 0                    |
|                                         | monthly mean              | Soil Frozen Water Content                | kg m-2       | 2                                    | 2   | 0      | 0                    |
|                                         | monthly mean              | Surface Runoff                           | kg m-2 s-1   | 2                                    | 2   | 0      | 0                    |
|                                         | monthly mean              | Total Runoff                             | kg m-2 s-1   | 2                                    | 2   | 0      | 2                    |
|                                         | monthly mean              | Precipitation onto Canopy                | kg m-2 s-1   | 3                                    | 3   | 0      | 0                    |
|                                         | monthly mean              | Evaporation from Canopy                  | kg m-2 s-1   | 3                                    | 3   | 0      | 0                    |
|                                         | monthly mean              | Water Evaporation from Soil              | kg m-2 s-1   | 3                                    | 3   | 0      | 0                    |
|                                         | monthly mean              | Transpiration                            | kg m-2 s-1   | 3                                    | 3   | 0      | 0                    |
|                                         | monthly mean              | Water Content of Soil Layer              | kg m-2       | 1                                    | 1   | 0      | 0                    |
|                                         | monthly mean              | Temperature of Soil                      | К            | 3                                    | 3   | 1      | 0                    |
|                                         | monthly mean              | Tree Cover Fraction                      | 96           | 4                                    | 4   | 0      | 0                    |
|                                         | monthly mean              | Natural Grass Fraction                   | 96           | 4                                    | 4   | 0      | 0                    |

# VIACS Advisory Board Engagement with CMIP6 Variable Design

#### 60+ new variables requested (and more continuously coming in)

- Requirement of different time periods or heights
- Need for low-frequency reports of high-frequency statistics, e.g.:
  - monthly output file showing number of hours where precipitation exceeded a given heavy rain threshold
  - separation of variables by wet and dry days
- Interest in tile information, if simulated (e.g., agricultural tile of broader grid box)

Name (also description as peeded)



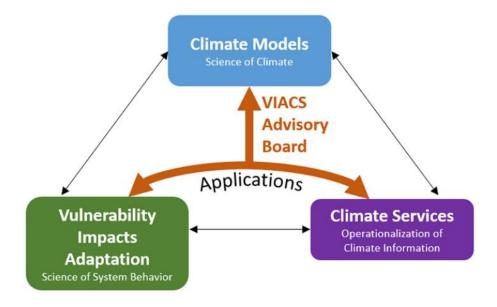
Photo: constructionweekonline.com

Additional natao

| Time resolution                                                                                                                                                                                                            | Name (plus description as needed)                   | Units                       | Additional notes                            |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------|---------------------------------------------|--|--|--|--|
| New variables requested by the agricultural sector (for Historical, DECK, and ScenarioMIP experiments, as well as requests for experiments within AerChemMIP, C <sup>4</sup> MIP, DAMIP, DCPP, GeoMIP, LUMIP, and VolMIP). |                                                     |                             |                                             |  |  |  |  |
| Monthly                                                                                                                                                                                                                    | Surface concentration of ozone                      | ppm                         | Also for use ecosystem and health sectors   |  |  |  |  |
| Daily, monthly                                                                                                                                                                                                             | Cropland tile maximum temperatures                  | K                           | Tile contains information from agricultural |  |  |  |  |
| Daily, monthly                                                                                                                                                                                                             | Cropland tile minimum temperatures                  | K                           | fraction of land in a given GCM             |  |  |  |  |
| Daily, monthly                                                                                                                                                                                                             | Cropland tile precipitation                         | $kg  m^{-2}  s^{-1}$        | grid box.                                   |  |  |  |  |
| Daily, monthly                                                                                                                                                                                                             | Cropland tile minimum relative humidity             | %                           |                                             |  |  |  |  |
| Daily, monthly                                                                                                                                                                                                             | Cropland tile wind speed                            | $\mathrm{m}\mathrm{s}^{-1}$ |                                             |  |  |  |  |
| Monthly                                                                                                                                                                                                                    | Number of precipitation days where accumulation was | No.                         | These two variables combine to describe the |  |  |  |  |
|                                                                                                                                                                                                                            | above $1 \text{ kg m}^{-2}$                         |                             | intensity of rainfall when it does occur.   |  |  |  |  |
| Monthly                                                                                                                                                                                                                    | Average precipitation accumulation on days where    | $kg m^{-2}$                 |                                             |  |  |  |  |
|                                                                                                                                                                                                                            | accumulation was above 1 kg m <sup>-2</sup>         |                             | 11                                          |  |  |  |  |

I Indian

# VIACS Advisory Board Engagement with CMIP6 MIP Application


#### 188 MIP Experiments assessed for VIACS applications

- Determined priorities for various application packages
- Identified specific experiments within MIPs that VIACS community is interesting in exploring for broader implications
- Historical and ScenarioMIP experiments most widely sought, followed by Decadal Climate Prediction Project (DCPP)
- Nearly all MIPs had at least one experiment that generated VIACS interest

| CMIP6 MIP Experiments that yo      | ou plan on exploring (see | n exploring (see full names of MIPs in next tab):               |     |   | AgMIP     |
|------------------------------------|---------------------------|-----------------------------------------------------------------|-----|---|-----------|
| Experiment group                   | Experiment short name     | Experiment Description / Design                                 |     |   |           |
|                                    |                           |                                                                 | 188 |   |           |
| @EXPT                              |                           |                                                                 |     |   |           |
| Diagnostics, Evaluation, and       | AMIP                      |                                                                 | 24  | 0 |           |
| Characterization of Klima (DECK)-1 |                           | observed SSTs and sea ice prescribed                            |     |   |           |
|                                    |                           |                                                                 |     |   | 1,2,3     |
| DECK-2                             | control                   | coupled atmosphere/ocean pre-industrial control run             | 26  |   |           |
|                                    |                           | to a price a distribution price in a distribution ratio         |     |   | 1,2,3     |
| DECK-3                             | 1pctCO2                   | impose 1%/yr increase in CO2 to quadrupling*                    | 25  |   | 1         |
| DECK-4                             | abrupt4xCO2               | Abruptly quadruple CO2, then hold fixed**                       | 24  |   | 1         |
| DECK-5                             | historical                | emission- or concentration-driven simulation of the recent past | 26  |   |           |
|                                    |                           | (~165 years)                                                    |     |   | 1,2,3,4,5 |
| AerChemMIP-1                       | RFDOC-01                  | Destruction from 1050 control union DD control                  | 23  |   |           |
|                                    |                           | Perturbation from 1850 control using PD aerosol and ozone       |     |   |           |
|                                    |                           | precursor emissions (all aerosols interact with radiation)      |     |   | 1,5       |
| AerChemMIP-1                       | RFDOC-02                  | Destruction from 1050 control union DD control                  | 21  |   |           |
|                                    |                           | Perturbation from 1850 control using PD aerosol and ozone       |     |   |           |
|                                    |                           | precursor emissions (only BC aerosols interact with radiation)  |     |   | 0         |

### **Summary and Continuing Work**

The Vulnerability, Impacts,
Adaptation, and Climate Services
(VIACS) Advisory Board of CMIP6
is designed to enhance
communication between the
climate modeling and climate
applications communities.



- Facilitating applications for climate monitoring, climate variability/extremes, and climate change
- Currently working to construct and process VIACS-relevant metrics for ESM evaluation
   (e.g., precipitation distributions, 100 meter winds, and 2D surface fields)
   Aspen Global Change Institute Workshop on ESM Evaluation this July/August
- Expect new energy for VIACS as CMIP outputs become increasingly available
- Parallel efforts within CLIVAR and USGCRP encouraged

