Quantifying Uncertainty in Teleconnections Simulated by Climate Models

Samantha Stevenson

National Center for Atmospheric Research, University of California at Santa Barbara

SST/air temp/SLP composite: DJF of El Nino peak

SST/air temp/SLP composite: DJF of El Nino peak

NCAR

Spatial pattern of SST associated with the PDO

SST/air temp/SLP composite: DJF of El Nino peak

NCAR

Spatial pattern of SST associated with the PDO

Spatial pattern of SST associated with the AMO

NCAR Climate Variability Diagnostics Package

Models simulate broad features of ENSO teleconnections

Fasullo, Otto-Bliesner & Stevenson (2017), Nature Climate Change, in revision

Models capture broad features of PDO teleconnections as well

Obs: CRU TS3.1

NCAR

Sheffield et al. (2013)

SON regressions on AMO index, 1900-1999 Obs: HadISST1.1, CRUTS3.1

Sheffield et al. (2013)

IPCCAR5WGI

Amplitude of climate modes not always well simulated

Zhang & Wang (2013)

NCAR

Amplitude of climate modes not always well simulated

NCAR

Newman et al. (2016)

a), b): PDO spatial structure in CMIP5 models closest to, farthest from observations

Newman et al. (2016)

Understanding structural differences: process-level diagnostics

CESM Last Millennium Ensemble (CESM LME): Otto-Bliesner et al. (2016)

Multiple ensembles, varying sizes: different combinations of climate forcings 850-2005 (Orbital, solar, volcanic, GHG, ozone/aerosol, land use/land cover, all of the above)

CESM Large Ensemble: Kay et al. (2016)

30+ members, 20th century: 1920-2005; 21st century: 2006-2100 (RCP8.5)

CESM Medium Ensemble: Sanderson et al. (2016)

15 members, 20th century: 1920-2005; 21st century: 2006-2100 (RCP4.5)

GFDL ESM2M: Rodgers et al. (2015)

30 members, 20th century: 1950-2005; 21st century: 2006-2100 (RCP8.5)

Composite SST/surface air temperature (colors), SLP (contours) during DJF of El Nino peak

NCAR Climate Variability Diagnostics Package

SST anomaly pattern associated with AMO: observations, CESM Large Ensemble

NCAR Climate Variability Diagnostics Package

PDO spatial structure in members of the CESM Large Ensemble closest to, farthest from observations

Newman et al. (2016)

What portion of long-term variability in teleconnected regions is driven by changes to major climate modes?

ENSO: strong influence on drought persistence

15-year drought (0.5σ threshold)

Stratified by mode (above 60th/below 40th percentile)

Brown = higher drought risk Green = lower drought risk

Change in drought persistence when ENSO STRENGTHENS

Stronger ENSO: Shorter drought in Australia, Africa, Southeast Asia, SW US

Longer drought in Amazon basin, Mexico

Stevenson et al. (2017), in review

Difference in 0-30cm soil moisture: (2006-2100) - (1920-2005), CESM Large Ensemble

Stevenson et al. (2017), in prep for Nature Climate Change

Drought risk changes: function of both mean and variance shifts

Teleconnections are influenced by internal atmospheric variability, coupled atmosphere/ ocean/land processes, and impacts from external forcings

Models capture ENSO teleconnections more reliably than AMO

Strong inter-model differences in teleconnection performance: both structural differences among models and internal variability are important

Large model ensembles can clear up differences, diagnose externally driven teleconnection responses

Large 20th/21st c. model ensembles, multi-centennial model simulations, and targeted observational improvements needed to constrain uncertainties in teleconnection estimates

Advancing Teleconnection Simulations

Samantha Stevenson

National Center for Atmospheric Research, University of California at Santa Barbara

a), b): PDO spatial structure in CMIP5 models closest to, farthest from observations c), d): Same as a), b) for members of the CESM Large Ensemble

First two EOFs of North Pacific SST: CESM Large Ensemble, observations

CMIP5 projections: shift in location of ENSO teleconnections

NCAR

SLP composites during DJF of El Nino peak: CMIP5 historical, RCP4.5 projections

IPCC AR5 WG1

CESM, ESM2M ensembles: ENSO teleconnection intensification

Left: Regression of temperature onto NINO3.4 index in the CESM Large Ensemble (Kay et al. 2015)

Right: *change* in the regression coefficient between 2040-2100 and 1920-1980

Fasullo, Otto-Bliesner, & Stevenson 2017, Nature Climate Change, in revision

Running 20-year NINO3.4 variance, RCP8.5

Fasullo, Otto-Bliesner, & Stevenson 2017, Nature Climate Change, in revision

CESM: differential ENSO response to anthropogenic forcings

Stevenson et al. (2017), Climate Dynamics

What new simulations and observations are needed to improve understanding of teleconnections in climate models?

Experiment short name	CMIP6 label	Experiment description	Forcing methods	Start year	End year	Minimum no. years per simulation	Major purpose			
DECK experiments										
AMIP	amip	Observed SSTs and SICs prescribed	All; CO ₂ concen- tration prescribed	1979	2014	36	Evaluation, variability			
Pre-industrial control	piControl or esm-piControl	Coupled atmosphere– ocean pre-industrial control	CO ₂ concentration prescribed or calculated	n/a	n/a	500	Evaluation, unforced variability			
Abrupt quadrupling of CO_2 concen- tration	abrupt-4×CO2	CO ₂ abruptly quadrupled and then held constant	CO ₂ concentration prescribed	n/a	n/a	150	Climate sensitivity, feedback, fast responses			
1 % yr ⁻¹ CO ₂ concentration increase	1pctCO2	CO ₂ prescribed to increase at $1 \% \text{ yr}^{-1}$	CO ₂ concentration prescribed	n/a	n/a	150	Climate sensitivity, feedback, idealized benchmark			
CMIP6 historical simulation										
Past ~ 1.5 centuries	historical or esm-hist	Simulation of the recent past	All; CO ₂ concen- tration prescribed or calculated	1850	2014	165	Evaluation			

CMIP6: also supports "sub-MIPs" with specific scientific targets

			Questions			Grand science challenges				
	Response.	Stateman	Variabilit.	Course of a grant and	Melting 1. Sensi	Climates.	Changes ,	Regionary availabin.	Biogeoch	Near lerin Drediction
AerChemMIP			0							0
C4MIP			0				0			
CFMIP		0	-				Õ			
DAMIP	Ŏ	-	0		0					
DCPP	0						0	0		•
FAFMIP		0		0						
GeoMIP	0					0	0			
GMMIP			0				0			0
HighResMIP	0			0						
ISMIP6			0		\bigcirc					
LS3MIP	0				0					
LUMIP		-	0				0	-		
OMIP			0					0	0	•
PMIP		0	\sim						0	~
KENIP			0						\sim	0
		\bigcirc		\sim					0	\sim
		0		0						0
CORDEX	0			~		\bigcirc	0			~
DynVarMIP	0			0						0
	0				\bigcirc		\sim	\sim		
VIACS AB	0						0	\bigcirc		

CMIP6: also supports "sub-MIPs" with specific scientific targets

Uncertainty quantification: process-level insights

Modeling Centers

Major feedbacks relevant to the ENSO cycle (a) Atm. Bjerknes feedback 👝 14 -14 Bjerknes: 12 12 sensitivity of SST \mathbf{b} 10⁻³Nm⁻²/°C ß 10 10 6 6 a to wind stress 00 b 8 b a a 6 6 6 a b 4 Δ a \mathbf{b} 2 2 0 0 ⁰ – (b) Surf. Fluxes feedback 0 **d** a -5 -5 a Surf. fluxes: b **b** \mathbf{b} - -10 damping of SST by 6 b b a C Ø h a latent heat flux - -15 a -20 - -20 ¹⁰–(c) Shortwave feedback 10 e ·**b**·**b** 5 Shortwave B 5 a a ģ $Wm^{-2}/^{\circ}C$ h feedback: damping 0 0 þ 8 80 C ß of SST by -5 -5 a -10 shortwave fluxes -10 -15 -15 -20 - -20 2 3 0 5 6 9 10 11 12 13 14 15 16 17 18 19 20 21 22 4 8 1 7 Bellenger et al. (2014)

Off-equatorial air/sea fluxes in precursor regions

TPOS2020 First Report, Second draft (September 2016)

Important observational target: vertical temperature structure

NCAR

CESM: zonal SST gradient weakens, vertical stratification increases

ESM2M: zonal SST gradient strengthens, vertical stratification doesn't increase as much as CESM

Nonlinear zonal advection: anomalous advection of anomalous gradient NINO3: Eastern Pacific El Niño

CESM

ESM2M

Stevenson et al. (2017b), in prep

Paleoclimate: key piece of the puzzle

Paleoclimate: key piece of the puzzle

Li et al. (2013)

21st c. teleconnected responses governed by changes to modal amplitude, atmospheric responses to SST variability

- Some teleconnection responses are robust across models (El Nino impacts), some may not be
- Anthropogenic forcing is extremely complex, implemented differently across models: e.g. details of land-use changes, aerosol microphysics

CMIP6-endorsed MIPs may help clarify some issues, as may observational process studies

Should US CLIVAR make recommendations on priorities for new model experiments/ analyses of simulations planned for CMIP6?

What are best practices for process-based model evaluation using observational data?

What are the highest priority new observations to target for improvements in simulated teleconnections?

AMO: influence on drought persistence more moderate

15-year drought (0.5σ threshold)

Stratified by mode (above 60th/below 40th percentile)

Brown = higher drought risk Green = lower drought risk

Change in drought persistence when AMO STRENGTHENS

Shorter drought in northern Amazon, parts of Australia

Stronger AMO:

Longer drought in SW US, monsoon Asia

Stevenson et al. (2017), in review

Paleoclimate: key piece of the puzzle

Emile-Geay et al. (2013)

Forced changes to teleconnections also matter

Stevenson et al. (2017), in review

