Advancing Teleconnection Simulations

Samantha Stevenson

National Center for Atmospheric Research, University of California at Santa Barbara

a), b): PDO spatial structure in CMIP5 models closest to, farthest from observations c), d): Same as a), b) for members of the CESM Large Ensemble

CMIP5 projections: shift in location of ENSO teleconnections

SLP composites during DJF of El Nino peak: CMIP5 historical, RCP4.5 projections

CESM, ESM2M ensembles: ENSO teleconnection intensification

Left: Regression of temperature onto NINO3.4 index in the CESM Large Ensemble (Kay et al. 2015)

Right: change in the regression coefficient between 2040-2100 and 1920-1980

Fasullo, Otto-Bliesner, & Stevenson 2017, Nature Climate Change, in revision

No agreement on future changes in ENSO amplitude

Running 20-year NINO3.4 variance, RCP8.5

Fasullo, Otto-Bliesner, & Stevenson 2017, Nature Climate Change, in revision

CESM: differential ENSO response to anthropogenic forcings

2S-2N SST vs. lon, time: 0 = January of peak year PI = 850-1849 20th c. = 1850-2005

Mos since Jan (Year 0)

Mos since Jan (Year 0)

100

e) GHG: 20th c. - PI

g) O3AER: 20th c. - PI

200

150

What new simulations and observations are needed to improve understanding of teleconnections in climate models?

Simulations planned for CMIP6 (DECK)

Experiment short name	CMIP6 label	Experiment description	Forcing methods	Start	End year	Minimum no. years per simulation	Major purpose
DECK experimen	nts						
AMIP	amip	Observed SSTs and SICs prescribed	All; CO ₂ concentration prescribed	1979	2014	36	Evaluation, variability
Pre-industrial control	piControl or esm-piControl	Coupled atmosphere— ocean pre-industrial control	CO ₂ concentration prescribed or calculated	n/a	n/a	500	Evaluation, unforced variability
Abrupt quadrupling of CO ₂ concentration	abrupt-4×CO2	CO ₂ abruptly quadrupled and then held constant	CO ₂ concentration prescribed	n/a	n/a	150	Climate sensitivity, feedback, fast responses
1 % yr ⁻¹ CO ₂ concentration increase	1pctCO2	CO ₂ prescribed to increase at 1 % yr ⁻¹	CO ₂ concentration prescribed	n/a	n/a	150	Climate sensitivity, feedback, idealized benchmark
CMIP6 historical	simulation						
Past ~ 1.5 centuries	historical or esm-hist	Simulation of the recent past	All; CO ₂ concentration prescribed or calculated	1850	2014	165	Evaluation

CMIP6: also supports "sub-MIPs" with specific scientific targets

CMIP6: also supports "sub-MIPs" with specific scientific targets

Uncertainty quantification: process-level insights

Major feedbacks relevant to the ENSO cycle

Bjerknes: sensitivity of SST to wind stress

Surf. fluxes: damping of SST by latent heat flux

Shortwave feedback: damping of SST by shortwave fluxes

Bellenger et al. (2014)

Important observational target: air-sea fluxes

Off-equatorial air/sea fluxes in precursor regions

TPOS2020 First Report

Important observational target: vertical temperature structure

CESM: zonal SST gradient weakens, vertical stratification increases

ESM2M: zonal SST gradient strengthens, vertical stratification doesn't increase as much as CESM

Important observational target: mixed-layer eddies

 $-u'\cdot\nabla T'$

Nonlinear zonal advection: anomalous advection of anomalous gradient NINO3: Eastern Pacific El Niño

Stevenson et al. (2017b), in prep

Also critical: improving long-term 20th c. estimates

Paleoclimate: key piece of the puzzle

Paleoclimate: key piece of the puzzle

Li et al. (2013)

Conclusions

21st c. teleconnected responses governed by changes to modal amplitude, atmospheric responses to SST variability

- Some teleconnection responses are robust across models (El Nino impacts), some may not be
- Anthropogenic forcing is extremely complex, implemented differently across models: e.g. details of land-use changes, aerosol microphysics
- CMIP6-endorsed MIPs may help clarify some issues, as may observational process studies