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Fisheries decisions across space and time
scales
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Should | go fishing?

Source: Discovery Channel



Where should | go
fishing?
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http://www.cmar.csiro.au/sbt-east-coast/

Hobday et al., 2011; CJFAS, 68 See also: h'ttps://www.pifsc noaa.gov/eod/
turtlew php
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When should | act to protect aquaculture
against poor conditions?
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What should our processing and
distribution capacity be ready for?
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Mills et al., 2013, Oceanography;
http://www.gmri.org/our-work/research/projects/gulf-maine-lobster-forecasting



When should | release salmon fry
from my hatchery?

Ww.ﬁNs.gov; trucking salmon in the
Sacramento River



How should | best deploy monitoring/
modify closures to protect human health?
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How much catch should be allowed next year?
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Seasonal climate predictions and
marine resource decisions

* All living marine resources, and the industries
built around them, are shaped by climate

* Failing to account for climate variation and
change in decision-making can lead to painful
economic and health outcomes

* An opportunity for seasonal climate prediction?



Challenges in applying seasonal climate
predictions to marine resource decision

Complex relationship between climate and marine
resources

Decisions at local to regional scales

High “burden of proof’/regulatory inertia for decisions
with economic and public health consequences



Challenges in applying seasonal climate
predictions to marine resource decision

 Complex relationship between climate and marine
resources (but many first-order relationships with
basic climate variables)

« Decisions at local to regional scales (could be hard,
but it doesn't hurt to look...)

* High “burden of proof”/regulatory inertia for
decisions with economic and public health
consequences (but this challenge was met for
weather prediction and we have 30+ years of
hindcasts to assess confidence)



Seasonal Sea Surface Temperature anomaly
predictions for coastal ecosystems

e SST anomalies are both leading indicators and
important drivers of ecosystem fluctuations

* Assessment of SST predictions has been strongly
skewed toward basin-scale variations (e.g., ENSO)
and SSTs often viewed as precursors to predicting
regional air temp/precip anomalies

 For marine resources, SST anomalies are of direct
interest, and predictions along continental margins
are essential

Stock et al., 2015, Progress in Oceanography, 137, 219-236



Synthesize predictability across Large
Marine Ecosystems (LMEs)
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Large Marine Ecosystems: Ocean areas, generally along
continental margins whose ecological systems are
characterized by similarities in bathymetry, hydrography and
biological productivity, and whose plant an animal populations
are inextricably linked to one and other in the food chain

(Sherman and Alexander, 1986)




Gulf of Alaska SST anomaly predictions

Persistence ACC GFDL-FLOR ACC

persitence forecast Gulf of Alaska GFDL-FLOR Guif of Alaska

Forecast lead (months)
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Stock et al., 2015, Progress in Oceanography, 137, 219-236




Forecast captures seasonal transition between
less predictable localized SST anomaly and
more predictable basin-scale patterns

Correlation between March GoA Correlation between August GoA
SST anomaly and SST anomalies SST anomaly and SST anomalies
over the North Pacific Basin over the North Pacific Basin

Stock et al., 2015, Progress in Oceanography, 137, 219-236



California Current patterns similar to GoA but
not as separable from persistence

Persistence ACC GFDL-FLOR ACC

persitence forecast California Current GFDL-FLOR California Current

Forecast lead (months)

Forecast initialization month  Forecast initialization month
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NMME often improved anomaly correlation
relative to individual models

NMME Ensemble Mean CA Current
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Insular Pacific/Hawaiian (IP/H) SST
anomaly predictions
Persistence ACC GFDL-FLOR ACC

persitence forecast Insular Pacific-Hawaiian GFDL-FLOR Insular Pacific-Hawaiian

Forecast lead (months)

Forecast initialization month  Forecast initialization month
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Stock et al., 2015, Proéress in Oceanography, 137, 219-236




Forecast captures seasonal transition
between different basin-scale influences

Correlation between Sep Correlation between Feb
initialized SST anomaly and  forecast from Sep initialization
predicted Jan-Mar SST and Jan-Mar IP/H anomalies

anomalies in the IP/H
Stock et al., 2015, Progress in Oceanography, 137, 219-236



Multiple cases of skill above

persistence in the Gulf of Mexico
Persistence ACC GFDL-FLOR ACC

persitence forecast Gulf of Mexico GFDL-FLOR Gulf of Mexico

Forecast lead (months)

Forecast initialization month  Forecast initialization month
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Smaller scale is challenges forecast

systems in the Northeast U.S
Persistence ACC GFDL-FLOR ACC

persitence forecast Northeast U.S. Continental Shelf GFDL-FLOR Mortheast U.S. Continental Shelf
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Even the NMME doesn’t help for some

systems

N.E. U.S. Cont. Shelf
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Are these systems
unpredictable, or do
they just lie beyond
our present model’'s
capacity?

NOAA/COCA; Curchitser et al.



Regional ocean prediction from
global climate prediction systems

e SST Forecast skill varies widely by LME, initialization month,
lead time and, to a degree, forecast system.

 There are many cases with high skill that also exceeds
persistence. Analysis across 64 LMEs confirms this.

* Diverse mechanisms responsible for skill, but successfully
capturing the interplay between local and basin-scale
variation is a common thread.

e Less luck with salinity, promising results with sea ice
(Bushuk et al., 2017; GRL + others)

Room for improvement, but what can we do with what we
have?



Back to Cannery Row....

Tamrhasi et al.,
2017; Ecological
Applications
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California sardine recruitment .~ =+
linked to SST anomalies
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Current models exhibit significant seasonal
SST anomaly prediction skill California Current

Ensemble Mean
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Jacox et al., Climate Dynamics, 2017
(see also Stock et al., PinO, 2015; Hervieux et al., Climate Dynamic, 2017)




Setting harvest guidelines™

HG; = (B — 150000)E};y

 HG = harvest guideline for stock (catch limit in tons yr-1)

« B = an estimate of the stock biomass (tons)

* Ens = the exploitation rate (fraction of stock removed
per year) producing the maximum sustainable yield

« 150,000 ton “harvest-cutoff” below which the stock is

closed (HG = 0)

*Each term relies on objective, data-driven statistical analysis,
refined across decades of scientific work, scrutinized by
management, industry and independent scientists.



Consider harvest guidelines wit
of environmental data to antici

SST averaging window Biomass of age 1+ fish
(start of year estimate)

HG2

N INCcreasing use

nate change

28 years * 1000 iterations * 4 MSEs = 112,000 simultions

Tommasi et al.,

2017, Ecological Applications



Increased expected yield and
stock biomass through
anticipatory management
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Important to
balance anticipatory
management with
harvest cutoff

Red = past SST
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Light Blue = forecast SST

Dashed = no low biomass
cutoff

Tommasi et al., 2017; Ecological Applications



Challenges in applying seasonal climate
predictions to marine resource decision

 Complex relationship between climate and
marine resources (but many first-order
relationships with basic climate variables)

* Decisions at local to regional scales (but it
doesn’t hurt to look...)

* High “burden of proof”/regulatory inertia due to
economic and public health consequences (but
this challenge was met for weather prediction
and we have 30+ years of hindcasts)



Bridging scales between large-scale
climate and coastal resources

NOAA GFDL CM2.1 Climate Model
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Skillful out-of-sample habitat anomaly prediction
for Chesapeake Bay sub-regions

Surface temperature

Sept. 2011: Observed Sept. 2011: Modeled

Muhling et al., Estuarine, Coastal and Shelf Science, 2017

Surface salinity
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Projected changes in V. vulnificus distributions
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Complex ecosystem
responses to

climate forcing

Trophic level
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Seamless climate predictions and projections
across time scales

’ Global Climate Observing System |

e.g. satellites, Argo, meteorological stations

Data Assimilation System
Initialization to present observed conditions
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Operational Global Model (%° x week) predicting:

Holistic regional
* Zooplankton _
* Micronekton marine resource

* Skipjack

+ Yellowfin prediction
* Bigeye

Regional model \
(1/12° x day)

with Open

Boundaries

Conditions provided _\j
from global model

Gehlen et al., 2015; Journal of Operational Oceanography



Changing baselines under climate
change: managing fish on the move

Does a recovery plan make sense if warming
is extirpating a fishery from my region?
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Nye et al., MEPS, 2009



When should new fisheries be opened?
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Useful multi-annual climate
prediction for fisheries

Forecast Accuracy next 1-3 years

D
©
-
e
—
©
J

-200 -100

Skill in most LMEs is due to the predictable signature of radiative forcing over
50 year time-scales rather than evolving modes of climate variability

Tommasi et al., (2017), Frontiers



Overall fisheries productivity baselines may
also be changing rapidly

% NPP change % Catch change

Potential for regional changes in fish catch in excess of 50%

Stock et al., PNAS, 2017



Can dynamic management with
short-term forecasts provide long-
term resilience?



