Linkage between Arctic Climate Change and Mid-Latitude Extreme Climate

Steve Vavrus Nelson Institute Center for Climatic Research University of Wisconsin

(with assistance from Timo Vihma, Simon Wang, and Yannick Peings)

Increasing Trend of Extreme Weather

Extreme Weather often Coincides with Weak Polar Vortex

Cohen et al. 2017

Once Black and White . . .

More Autumn Snow Cover = Strong Siberian High = Negative AO

GEOPHYSICAL RESEARCH LETTERS, VOL 28, NO 2, PAGES 299-302, JANUARY 15, 2001

The role of the Siberian high in Northern Hemisphere climate variability

Judah Cohen Atmospheric and Environmental Research, Inc., Cambridge, Massachusetts

Kazuyuki Saito¹ and Dara Entekhabi Massachusetts Institute of Technology Cambridge, Massachusetts

Once Black and White . . .

Warm Arctic-Cold Continents Pattern

Once Black and White . . .

Warming Arctic = Weaker, Wavier Flow = More Extremes

Francis & Vavrus 2012

... Now (at least) 50 Shades of Gray

Different Seasonal Patterns of Recent Warming

Recent Winter Warming 1998-2016 vs. 1979-1997

Recent Summer Warming 1998-2016 vs. 1979-1997

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

Mostly ocean-based

Mostly land-based

Role of Snow Cover

Judah Cohen

Rutgers Global Snow Lab

Spring-Summer

Tropical vs. Polar Tug-of-War

0

Projected Winter Warming, CMIP5

Barnes and Screen, 2015

Tropical vs. Polar Tug-of-War

1

Barnes and Screen, 2015

Barnes and Screen, 2015

Weaker and Wavier Circulation Promotes Extreme Weather?

Meridional temperature gradient not sole control on mid-latitude jet (eddy-mean flow feedbacks) [*Hoskins & Woolings 2015*]

Not all studies find sufficient Arctic heating from sea ice loss to cause significantly weaker/wavier flow [*Perlwitz et al. 2015*]

Thermal influence of wavier circulation on cold extremes is mitigated by advection of warmer upstream Arctic air [*Screen 2014*]

A weaker, wavier circulation might require a stratospheric pathway [*Kim et al. 2014*]

Impact of Amplified Planetary Waves Differs by Region

Impact of amplified planetary waves on extreme weather differs by region

Screen & Simmonds 2014

Dependence of Teleconnections on Background State

Response of Autumn-Winter 300 hPa Heights

Sung et al. 2016, Overland et al. 2016

Different *Regional Responses to* Sea Ice Loss

Regional <u>Wintertime</u> Sensitivity to Projected Future Sea Ice Loss:

Fewer and shorter-lived cold extremes More and longer-lived cold extremes

Screen et al. 2015

Different Seasonal Responses to Sea Ice Loss

Enhanced Arctic warming changes summertime mid-latitude circulation

Amplification of quasi-stationary waves by resonance in middle latitudes

More extreme weather events during summer

7-2011

7-2006

8-2004

8-2003

8-2002

7-2000

7-1994

7-1993

8-1987

8-1984

European heat wave

in Northern Europe

Number of observed July and August resonance months

Coumou et al. 2014 Petoukhov et al. 2013

Barents/Kara Sea-Asian Winter Teleconnection

Warm Barents/Kara Seas \rightarrow Cold Asia

Kug et al. 2015

Barents/Kara Sea-Asian Winter Teleconnection

Warm Barents/Kara Seas \rightarrow Cold Asia

GISTEMP team 2016

Barents/Kara Sea-Asian Winter Teleconnection

Warm Barents/Kara Seas \rightarrow Cold Asia

Is Barents-Kara warming due simply to local / sea ice loss or upstream Atlantic SSTs? [Sato et al. 2014]

Or is atmosphere heating driving the ice loss? [*Sorokina et al. 2016*]

Is teleconnection caused by tropospheric Rossby waves or via stratosphere? [*Kim et al. 2014*]

Is Asian cooling trend just internal variability? [*McCusker et al. 2016, Sun et al. 2016*]

GISTEMP team 2016

We are in the "pre-consensus" stage of a theory that there are links between the rapid warming of the Arctic and some severe weather events since 2007. --Jim Overland

We are in the "pre-consensus" stage of a theory that there are links between the rapid warming of the Arctic and some severe weather events since 2007. --Jim Overland

We are in the "pre-consensus" stage of a theory that there are links between the rapid warming of the Arctic and some severe weather events since 2007. --Jim Overland

2015-16 'Godzilla' El Niño

We are in the "pre-consensus" stage of a theory that there are links between the rapid warming of the Arctic and some severe weather events since 2007. --Jim Overland

The question is not whether Arctic changes are affecting mid-latitudes but rather how and by how much. --Ted Shepherd, <u>Science</u> (Sep 2016)

Different Seasonal Patterns of Sea Ice Loss

What about Atmospheric Blocking?

Greenhouse forcing generally leads to less blocking in models [*Barnes and Polvani 2015*]

But increasing waviness has been detected [*Francis-Vavrus 2015, Di Capua-Coumou 2016*]

Also evidence of more <u>high-latitude</u> blocking [*Hanna et al. 2013, 2014*]

Warm Arctic-Cold Continents Pattern November 17, 2016

