What metrics can be used to analyze Arctic – mid-latitude linkages?

Timo Vihma¹, Jennifer Francis², Dörthe Handorf³, Marlene Kretchmer⁴, Cody Routson⁵, Ralf Jaiser³, Klaus Dethloff³, Annette Rinke³

¹ Finnish Meteorological Institute
² Department of Marine and Coastal Sciences, Rutgers University
³ Alfred Wegener Institute, Helmholtz Center for Polar- and Marine Research
⁴ Potsdam Institute for Climate Impact Research
⁵ Northern Arizona University

U.S. CLIVAR Arctic – mid-latitude linkages WG, Washington D.C., 1-3 February 2017
Outlook

Metrics related to observed relationships and processes
- applicable metrics depend on the observations and processes

Novel methods to analyse Arctic – mid-latitude linkages
- clustering methods, Maximum Covariance Analysis, Causal Effect Networks, reconstruction of paleoclimatological conditions, ...

Model performance metrics
- evaluation of model representation of, e.g., co-variability relationships and individual processes
- from linkage analysis methods to model performance metrics

Discussion
Metrics related to observed relationships and processes linking the Arctic and mid-latitudes

Strength and occurrence of cold-air outbreaks and blockings

- Arctic Amplification \rightarrow cold-air outbreaks less cold (Serreze et al., 2011; Screen, 2014), but at least over East Asia winter cold-air outbreaks have become more frequent, stronger and longer lasting (Kim et al. 2014, Kug et al., 2015)
- No significant trends in blocking activity in hemispherial scale (Barnes et al., 2014), but more frequent Greenland Blocking (Overland and Wang, 2010; Hanna et al., 2016)

Results may be sensitive to the exact definitions of a cold-air outbreak and a blocking

Frequency of occurrence of high-amplitude wave patterns (HAPs)

Are HAPs happening more often?

Jan 6 2014 “Attack of the Polar Vortex”
Metrics related to observed relationships and processes linking the Arctic and mid-latitudes

Meridional Circulation Index (MCI)

Francis and Vavrus (2015):

\[
MCI = \frac{v|v|}{u^2 + v^2}
\]

Clustering 100 largest temperature anomalies during last 10 winters into 6 groups, the most common group is the warm Arctic – cold continents pattern. It typically occurs under a specific pattern of MCI.
Metrics related to observed relationships and processes linking the Arctic and mid-latitudes

Meandering Index (M)

M excludes blocks, cut-off lows and highs

M calculated for the waviest contour

Strong negative correlation with AOI

Di Capua and Coumou (2016)

Changes in M during 1979-2015:

- Strong (~50%) increases in occurrence of large M in autumn and, in Mid-Pacific / N. America, in summer

- In summer, daily trends negative; 5-day and 11-day means positive trends
 => synoptic waves weaker, planetary waves larger amplitude.
Sinuosity

Metrics related to observed relationships and processes linking the Arctic and mid-latitudes

Wavier flow, consistent with F&V 2012, 2015 and Di Capua & Coumou 2016
Novel methods to analyse Arctic – mid-latitude linkages

Self-Organizing Maps (SOM)

Example: Arctic sea ice and summer precipitation in China (Uotila et al., 2014)

Clustering allows application of new metrics:

Temporal changes can be divided into contributions due to changes in (a) frequency of occurrence of patterns, (b) intensity of patterns, and (c) both of them.

Usually applied for time series of 2D fields, but can also be applied to 1D fields: e.g. T(z) can be projected against pressure fields.
Novel methods to analyse Arctic – mid-latitude linkages

Pattern Scaling

An approach proposed by Blackport and Kushner (2017):

The local multi-decadal mean atmospheric response is assumed to be separately proportional to the total sea ice loss and to the total low-latitude ocean surface warming.

→ estimates for the response, in a coupled climate model, to Arctic sea ice loss with low-latitude ocean temperatures fixed and vice versa.

Example: SLP response

![Map showing atmospheric response](image)

The annual mean SLP response for the ensemble mean of CCSM4 RCP5 forcing experiments with respect to the 2032:2051 and 2052:2071 epochs.
Causal Effect Networks (CEN)

- CEN-algorithm is multivariate approach, which tests for conditional dependent relationships among a set of time-series and for different lags.
- Distinguishes between spurious correlations and causal relationships.
- CEN can be applied in hypothesis testing or to evaluate model data.

Example: test hypothesis about Arctic induced drivers of the Stratospheric polar vortex (e.g. Kim et al., 2014 and Cohen et al., 2014). Data: Monthly time-series in winter (DJF)

Results:
Reduction in Barents-Kara sea ice in fall leads to increased SLP over the Ural Mountains followed by increased vertical wave activity and a weakened stratospheric polar vortex

Kretschmer et al., 2016 (J Clim)
Novel methods to analyse Arctic – mid-latitude linkages

Limitations of CEN

- Causal interpretations only possible with respect to the included time-series
- Not-included external drivers might affect the network structure

→ More sophisticated method developed:

Response-guided causal precursor detection (RG-CPD)

1. Detect communities in multi-variate data which correlate positively (red) or negatively (blue) with the response variable at different lead-lag times.

2. Take area-weighted averages of all communities creating time-series of precursors.

3. The algorithm removes all non-causal links due to common drivers, auto-correlation or indirect links.

See poster by Kretschmer et al.
Novel methods to analyse Arctic – mid-latitude linkages

Reconstruction of paleoclimatological conditions

Large datasets to assess the evolution of latitudinal temperature gradients and moisture transport

See poster by Routson et al.
Climate model performance metrics

Maximum Covariance Analysis (MCA)

to detect atmospheric changes initiated by low sea ice conditions

GPH 500hPa
32% expl. covariance

GPH 500hPa
37% expl. covariance

Metrics \rightarrow Taylor Plot
Patterns of first MCA mode
AMIP simulations (CMIP5)
Ensemble mean data
Ensemble size: 3-5 members

None of these model ensembles reproduces observed first MCA-mode with (N)AO-like winter pattern

Handorf et al., GRL 2015
Climate model performance metrics

From temporal evolution method to metrics?

Polar cap (65-85°N) mean temperature; low ice (1998-2013) minus high ice (1979-1997) years

The strong stratospheric warming in late winter is related to weaker zonal winds and reduced upward propagation of planetary waves.

In 60-year perpetual runs with fixed sea-ice forcing, the AFES model reasonably well reproduces the temporal evolution of the Polar cap mean temperature profile.

How to define metrics? Possibilities:
- Termination
- Amplitude of change

Jaiser et al., JGR 2016
Conclusions

● The metrics presented have yielded a lot of new information on various relationships and trends not easily detectable otherwise.
● Some metrics are sensitive to the exact practise of calculating them, as well as to inaccuracies in observations and reanalyses.
● Even if changes in certain metrics are robust, the reasons for the changes often remain unclear.
● New analysis methods have allowed novel applications of traditional metrics of climate model performance (e.g. Taylor plots).

Way forward

● There is need for standardization of metrics so that various studies can be better intercompared.
● Novel metrics found applicable in studies based on reanalyses should be more extensively applied in evaluation of climate and NWP model performance.
● More extensive use of promising novel methods, such as CEN, RG-CPD, MCA, SOM, NARMAX, and evolutionary algorithms (the last two not yet applied in the field), some of them applicable for distinguishing between forced signals and natural variability
● Paleoclimatological data can help in better understanding Arctic – mid-latitude linkages.
References

