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Global Warming Index based on HadCRUT4 - updated until Dec 2016
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 Mean shift exceeds 0.5C 20-
global temperature rise o
in both winter and summer.
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“Pursuing Efforts at 1.5C?”

UNFCC asked IPCC to develop SR 1.5 to evaluate
Issues around the 1.5C/2C temperature targets.
Climate extremes only one component of the report.

Limited body of research assessing 1.5C/2C extremes
compared to higher emission scenarios.

Calls for a framework to assess 1.5C/2C impacts and
those avoided from higher degree worlds.

RCP scenarios may not be the best option to answer
the 1.5C/2C question.

Requires large sets of simulations to adequately
sample the extreme weather.



RCP Model Scenarios May Not be the Best Option to
Answer the 1.5/2C Question
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RCP Model Scenarios May Not be the Best Option to
Answer the 1.5/2C Question
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HAPPI

Half a degree of Additional warming, Projections,
Prognosis, and Impacts.

Assess the shift in extreme events or other climate
change impacts as a function of climate policy targets.

50-100 member ensemble of AMIP simulations
conditioned on 2006-2015 natural variability for 1.5C
and 2.0C above preindustrial.

Models Include: CAM4, CAMS5.1.2 (25x25km),
CAMS.1-1degree, CAN, HadAM3P, HADGEMS3,
MetUM-GOML2, MIROCS5, MPI-ECHAM®G.3,
NorESM1_Happi

Results may be used to Inform the Special IPCC
Report on 1.5C.



The Emissions Scenario Approach
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Temperature
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Changes in Northern Hemisphere Winter Storm Tracks, Attributed to the 1.5°C and 2°C Levels

ENVIRONMENTAL
DEFENSE FUND*

Finding the ways that work

EDF 2

of Global Warming HH

Monika J. Barcikowska, Scott Weaver, Frauke Feser

+ Helmholtz-Zentrum
. Geesthacht

Centre for Materials and Coastal Research

Environmental Defense Fund/Helmholtz Zentrum Geesthacht

ABSTRACT
The observed hydro-climate in the Northern Hemisphere is closely tied to the large-scale atmospheric circulation over the Northern Atlantic and Pacific Ocean.
Several studies have shown that recent changes in these circulation patterns (e.g. North Atlantic Oscillation/Arctic Oscillation) correspond with stronger cyclone
activity, which supply heat and moisture to the parts of Europe and North America. Therefore, future changes in storminess will likely contribute to changes in a wide
range of weather extremes (e.g. surges, extreme precipitation and winds).
This study advances understanding of differential climate impacts between 1.5C and 2C levels of global
warming by dally output of the high. HAPPI We are analysls of
large ensemble runs to infer about changes in winter large—scale circulation, their impact on characteristics
of extratropical storms and extreme precipitation events in the Northern Hemisphere. The
analysis corroborates the fact that in many regions (e.g. California) precipitation extremes do not
necessarily scale with the mean hydro-climate change. This underlines importance of high spatial and
in climate

to derive information about a future weather, relevant for the
local communities.
Half a Degree Additional warming, Prognosis, and Projected Impacts (HAPPI) project:
+ present decade {2006-2015):

* observed SSTs and sea ice;
*  +1.5°Cwarming:
* changesin SST from RCP2.6 runs (2091-2100 mean) are added to the observed SSTs;
* GHG, aerosols and land-use and cover from year 2095;
+2°C warming:
* changes in S5Ts and GHGs from weighted sum of RCP2.6 and RCP4.5 (2091-2100 mean)

Global Surface Temperature Change (“C)

%00 2020 2080 2060 2080 2100,

Large-scale atmospheric circulation over the North Atlantic

Comparison with observations: CMIPS models capture reasonably well the features of meridional pressure gradient, although with strong zonal bias
especially for low-resolution models (ECHAME.3 and NorESM1). Zonal bias is reduced for the higher resolution model, i.e. CAMS.1. However the
meridional pressure gradient in this model is larger than observed.
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+2°C warming climate change:
Models: MIROCS,CAMS.1 and ECHAMG.1 indicate a strengthening of
the surface and 850hPa winds, which is consistent with a strengthening
|of meridional pressure gradient.
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Changes In mean sea-level pressure [hPa) and wind vectors at 850hPa [m/s) for +2°C
warming experiment, compared to present climate. Changes are derived for models:
MIROCS, ECHAMS.3, NorESM1, CAMS. 1; after interpolation to the 3°x3° lat-lon grid.

Time-mean average of sea-level pressure [hPa), derived for 1979-2015, for ERA-I
reanalysis, and models: MIROCS, ECHAMG.3, NorESM1, CAMS. 1, computed for 3°x3°
lat-lon grid. Contour lines show a difference between observations and model.

Changes in spatial characteristics of winter storm patterns and accumulated wind energy

7spanal density storm tracks acc lated max wind speed CAMS
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Decadal climatology of accumulated 3-hrly storm occurrences (left, [storm freq/decade], shaded) and associated with them accumulated max wind speed
(right,[m/s/decade], shaded), derived for a} present climate, b) +1.5°C warming, ¢} +2°C warming in CAMS model. Contour lines show differences between
warming experiments and control run. Each ¢ rep the ble mean of five cl il c d for each member separately.

Changes in the frequency and intensity of winter storms

aox

AvFrage storm Inte:\slw [m/s] T CAMS

control run

= et ot
Seasonal numbers of (left) storms, and (right) seasonal maximum intensity [m/s],

i e pont

142°C . > = derived for (blue) present climate, (green) +1.5°C warming, (red) +2°C warming.
Each sample consists of 50 yearly values, i.e. ensemble of five-member decadal
climatologies.

Future changes of winter storms in the North Atlantic sector:

1) northeastward shift of max density and maximum accumulated
wind energy of storms (impacted north British Isles and Scandinavia);
2) increase of intensity of storms (impacted British Isles, north and
western coast of Scandinavia);

3) increasing | fre and | max i ity of storms

ML s

Climatology of storm maximum wind speed [m/s, shaded), derived
for the CAMS a) present climate, b} +2°C warming. Contour lines
show a difference between +1.5°C and +2°C warming. Climatology is
shown for grid cells with yearly average storm counts of 2 and

larger. Contact: mbarcikowska@edf.org
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Simplified Example of Operational vs. IPCC Climate Model Run
with increasing CO, in a Given Year

IPCC uninitialized “Free” run

» 1 summer per year
of model run

Operational Initialized run o

~ 20-25/month L >
' e T e . . 168 summers per

S ,
. \ year of model run
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Latest thinking on impacts of global T changes
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Unique & Extreme Distribution Global Large-scale
threatened weather of impacts aggregate singular

systems events impacts events
Species Extinction Droughts/floods Vulnerability Economic Tipping
Coral Damage hurricanes Devel. Nations Damages Points

Level of additional risk due to climate change

(°C relative to 1850-1900, as an
approximation of preindustrial levels)

—2003—2012

Undetectable Moderate High Very high



