Special Session: AMOC Stability Metrics
Multiple Equilibria in Box Models

$$m = k(\rho_2 - \rho_1) = k[\beta(S_2 - S_1) - \alpha(T_2 - T_1)]$$

$$m(S_2 - S_1) = -S_0 F_1$$

Rahmstorf (1996)
Multiple Equilibria in Box Models

AMOC exports freshwater: salt advection feedback is negative

AMOC imports freshwater: salt advection feedback is positive

Haline (reverse) circulation

Rahmstorf (1996)
Multiple Equilibria in Comprehensive Models

Multiple Equilibria in Comprehensive Models

Multiple Equilibria in Comprehensive Models

\[\psi_{\text{atl}} \quad (\text{Sv}) \]

AMOC Recovery

Multiple Equilibria in Comprehensive Models

\[\psi_{\text{atl}} \quad (\text{Sv}) \]

Hysteresis

\(L_1 \)

\(L_2 \)

\(\gamma_p \quad (\text{Sv}) \)
Multiple Equilibria in Comprehensive Models

Rahmstorf et al. (2005)
F_{ov} as AMOC Stability Metric

The Atlantic freshwater budget as a diagnostic for the existence of a stable shut down of the meridional overturning circulation

Pedro de Vries and Susanne L. Weber
Royal Netherlands Meteorological Institute (KNMI), De Bilt, Netherlands

“Pulse experiments strongly suggest that its sign determines the existence of a monostable or bistable regime in our model”
What is the sign of F_{ov}?

• Observations suggest $F_{ov} < 0$ (bistable regime)
 • E.g., Weijer et al. (1999), Huisman et al. (2010)

• Most coupled climate models $F_{ov} > 0$
 • E.g., Weaver et al. (2012)

• Are coupled climate models overestimating AMOC stability?
Special Session Presentations

• **Wei Liu**: Overlooked possibility of a collapsed Atlantic meridional overturning circulation in warming climate
• **Laura Jackson**: AMOC hysteresis in a state-of-the-art GCM
• **Aixue Hu**: Influence of the freshwater forcing pathway on the AMOC during 8.2k event in a high resolution coupled model
• **Wei Cheng**: Quantifying salt-advection feedback in GFDL and CESM pre-industrial control simulations