Linkage Between Arctic Climate Change and Midlatitude Weather

Xiangdong Zhang Department of Atmospheric Sciences and International Arctic Research Center University of Alaska Fatrbanks, USA

> With Contributions From: Zhe Han, Jun Inoue, Liran Peng,, Jiabao Wang, Lei Wang Shih-Yu (Simon) Wang, and Dave Whittleston

Atmospheric bridge linking Arctic sea ice to Eurasian cold weather

Arctic amplification: A spatial pattern shift

X. Zhang

Arctic Oscillation and Arctic warming

AO-driven temperature change do not capture the warming pattern shift, or Arctic amplification, or warm Arctic-cold Eurasia.

SAT(1997-2016)

Atmospheric circulation dynamics: A spatial pattern shift and the Arctic Rapid change Pattern (ARP)

The rapidly changed Arctic from the mid-1990s to the early 2000s provide an opportunity to detect this circulation change signal.

Zhang et al., 2008

In the mid-1990s

What physics or dynamics does ARP represent?

Zhang et al., 2008

ARP enhances Arctic-lower latitude interactions

provided a shortcut of atmosphere and ocean heat transport into the central Arctic from the midlatitude

re-circulate cold polar air to the midlatitude from Arctic

Zhang et al. (2008)

Negative polarity of ARP has caused the shift of the warming pattern and sea ice retreat

• Amplified warming over the central Arctic Ocean, and cooling over Eurasia.

3.5 3.0 2.5 2.0 1.75

1.5 1.25 1.0

0.75 0.5 0.25

-0.25

-0.5 -0.75

-1.0 -1.25 -1.5 -1.75 -2.0

-2.5 -3.0

-3.5 -4.0

Winter Surface Air Temperature Regressed onto ARP Index

Summer Sea Ice Concentration Regressed onto ARP Index

Summer Seasonal Sea ice Concentration Linear Trend Zhang et al. (2008)

Occurrence of ARP during recent years

Tropospheric warming and follow-up stratospheric warming in early 2016

There is an accelerated increase in tropospheric warming since the 1990s.

Simon Wang 2017

PDF of CAI Anomaly - Conex (Blue) and Trex (Red) for DJF (solid) and MAM (dotted)

- Upper left: A weakening in the NAST and a northward shift of the NPST
- Upper right: An increase in the negative phase of the NAST. An increase in the poleward displaced NPST under the impact of Arctic warming and La Niña
- Lower left: Arctic warming and La Niña influence the changes in storm tracks via modulating baroclinicity

High PV delivers uncertainty to mid-latitudes

Summary

- Selection of analysis metrics can influence understanding and interpretation of physics;
- Two-way linkage between the Arctic and midlatitude should be considered when selecting analysis metrics;
- Scale connection/interaction could be next step to understand occurrence of extreme events in light of impacts of Arctic climate change on midlatitude large-scale atmospheric circulation.