Fronts in Western Boundary Currents: A Comparative Study between the Brazil-Malvinas and the Kuroshio-Oyashio Confluence regions

Paulo H. R. Calil Laboratório de Dinâmica e Modelagem Oceânica - DinaMO Instituto de Oceanografia Universidade Federal do Rio Grande (FURG) dinamolab.net

> In collaboration with Shin-ichi Ito (Atmosphere and Ocean Research Institute The University of Tokyo)

WBC's are hotspots of everything

EKE (cm/s)²

Strong Currents - Confluence of waters of different types - Frontal variability - Important for connectivity and consequently phytoplankton diversity.

Barton et al. 2010

WBC's are hotspots of everything

Imawaki et al. 2013

WBC's are sites of increased turbulent heat flux release to the atmosphere.

Coincident with regions where CO2 is absorbed from the atmosphere.

Matias and Calil, in prep.

Confluence regions and associated recirculation gyres are important sites of subtropical mode water formation.

Subduction of carbon will be larger In these regions.

Eddy Kinetic Energy from AVISO (cm/s)²

Variability mostly dominated by the Kuroshio Extension front at ~ 35°N.

1000

Collision between the Brazil and Malvinas currents. Interaction with the Zapiola rise.

Net Heat Flux ($W m^{-2}$)

Poleward heat transport in KOCR is much larger than in the BMC.

Possible causes:

Much larger transport of the Kuroshio than the Brazil Current.

Large air-sea temperature/humidity differences because of continental origin of air masses in the KOE.

-100

 $|\nabla T|(\times 10^{-5} \circ Ckm^{-1})$

KOCR - two quasi-remanent features, known as the Isoguchi jets (Isoguchi et al. 2006). **Responsible for transporting warm waters** from the Kuroshio northwards.

In the BMC, C-shaped pattern due to confluence of Brazil and Malvinas currents, **Brazil Current overshoot and Malvinas Current** retroflection.

 $|\nabla T|(\times 10^{-5} \circ Ckm^{-1})$

KOCR - two quasi-remanent features, known as the Isoguchi jets (Isoguchi et al. 2006). Responsible for transporting warm waters from the Kuroshio northwards.

In the BMC, C-shaped pattern due to confluence of Brazil and Malvinas currents, Brazil Current overshoot and Malvinas Current retroflection.

Kida et al. 2015

Matano et al. 2010

Biomass and Productivity Patterns

Average Chlorophyll-a from MODIS

NPP

Average NPP (CbPM model)

Area-averaged timeseries of NPP shows **BMC** more productive.

Interannual variability.

Drivers of pCO₂ variability in the Western South Atlantic

Important drivers vary depending on the region (continental shelf, open ocean south of 30°S, north of 30°S).

Temperature and DIC control seasonal variability.

Biological production is particularly important in the Patagonian shelf.

Arruda et al. 2015

Regional Model Simulations

0

Regional Model Simulations

Model validation with available in-situ observations

Climatological run - general circulation and vertical structure are consistent with in-situ observations.

Calil 2017

Calil 2017

Modeled Vertical Velocity

12 km

Very large vertical velocities generated where surface fronts are most intense.

Spatial scales - O(1-10 km)

Requires high-resolution sampling/modeling.

Calil 2017

12 km

Very large vertical velocities generated where surface fronts are most intense.

Spatial scales - O(1-10 km)

Requires high-resolution sampling/modeling.

4 km

Calil 2017

J = -

Calil 2017

12 km

Buoyancy flux induced by heat, haline and frictional sources

$$\frac{g\alpha Q_0}{\rho c_p} + g\beta (E - P)S_0 + M_e \frac{\partial b}{\partial y}$$

Thomas and Lee, 2005; Marshall and Nurser, 1992

Final considerations

The biogeochemical response of the BMC and the KOCR will depend on specific physical characteristics.

Understanding the overall impact of the fronts in the physics and biogeochemistry requires high-resolution sampling and modeling.

Next steps

Similar modeling framework with implementation of biogeochemical model in both regions in order to understand similarities and differences.

In-situ surveys with similar sampling strategy.

