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* Southern Ocean Climatological energy budget (poleward of
555S)
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--Role of ocean heat storage
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Possible Mechanisms of sea ice loss:
Energetic perspective

OCEAN CIRCULATION
driven ice loss
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Possible Mechanisms of sea ice loss:
Energetic perspective

ATMOSPHERIC CIRCULATION
driven ice loss

Atmospheric Driven Ice Loss
HADCM3
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Possible Mechanisms of sea ice loss:
Energetic perspective

RADIATION
driven ice loss

Radiative Driven Ice Loss
NCAR CCSM4

N

'Radiation
(TOA-- into Earth)

1. Raditave gain
causes warming

-_—
T

3.Atmos.Jexports
energy

2. Atmos. warngs
and fluxes ener
to ice/ocean

1
—
T

Surface flux |
, Positive to atmosphere

Anomalous energy input to the
atmosphere over Southern Ocean (W m2)
o

1 |

-2 4 2 0 7 4
BEFORE sea ice retreat AFTER sea ice retreat
Time Lag (months)




OCEAN CIRCULATION ATMOSPHERIC CIRCULATION RADIATION
A driven ice loss B driven ice loss driven ice loss

4. Raditave loss 3. Raditave loss 1. Raditave gain
(due to warming) (due to warming) causes warming
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All three mechanisms (ocean driven, atmospheric driven and radiatively driven)
of SO sea ice loss is exhibited in the diversity of coupled climate models

— Can observations constrain the models that adequately represent the
relevant physics?




Observed Interannual Variability of SO Energy budget

Radiation (TOA)

Shown is the magnitude of
month-to-month variability of
energy fluxes into the Southern
Ocean (poleward of 60N) over
the 2000-2017 period from the
following sources:

WALL



Observed inter-annual magnitudes (20)

Atmospheric energy flux into
the Arctic (F,,,,)
Net radiation at the TOA

Surface energy flux
Atmospheric energy storage

In both the SO and Arctic, radiative variability is small compared to
the variations in atmospheric energy fluxes into the region

- Dominate balance between surface fluxes and lateral
atmospheric energy flux (with unknown causality)

- Atmospheric energy storage is non-negligible



How much solar radiation does sea ice reflect?

Reflected by
; Surface




Simplified (isotropic) shortwave radiation model
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Climatological Planetary Albedo

Atmospheric Contribution Surface Contribution
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Radiation Associated with SO ice loss

\ Radiative anomalies associated with sea ice retreat event
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Arctic radiative anomalies associated with ice loss
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Stationary Eddies
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F..... VARIABILITY (20 -- all months)
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Attempt to relate energetics to
sea ice variability

Observed Southern Ocean energy budget and sea ice area
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OCEAN CIRCULATION ATMOSPHERIC CIRCULATION RADIATION
A driven ice loss B driven ice loss driven ice loss

Conclusions

Radiative processes, oceanic
processes, and atmospheric dynamics
all contribute to Southern Ocean sea
ice loss events in the diversity of
CMIP5 climate models

ANNUAL VARIABILITY
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040 & - FWALL into the polar latitudes is
incredibly variable (14 W m-?)

- Radiative anomalies associated
with ice loss are small because the

atmosphere is opaque
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There is no clear relationship between FWALL and
sea ice extent in the observational record — In
both hemispheres
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Extras






Component contributions to
Wall flux variability (20)

Time Series of Wall Flux to the Arctic
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Temporal variability of Wall flux (20)
and tranport component contributions (W m)
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Annual

» Variability of Atmospheric energy flux into the Arctic is large
« 6 W m=2at the annual time scale, 12 W m-2 at the monthly time scale

* Primarily due to stationary waves and compensated by overturning (short
timescale) and transient eddies (annual timescale)
» Nearly equal contributions from the stratosphere and troposphere



Fwa  @nd sea ice extent
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Arctic emits
more OLR to
space when the
surface warms —
basin wide

Consistent with a
climate feedback
parameter of 1.5
W m=2 K-

Time Series of Arctic Average Surface Temperature and

/" Monthly
/ Annual
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Map of Arctic wide OLR
anomaly (W m2)
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Putting the pieces together

Time Series of Arctic Averaged Radiation, Atmospheric Energy flux

(Fyp.) @nd with sea ice concentration Relative variances of terms  in W
m-2 per 20— annual (seasonal)

-> FWALL 5.7 (8.5)

- RADIATION 1.8 (2.7)

- TENDENCY 0.7 (1.8)

// TOARadiation /F

WALL

N B O

Hint that enhanced F, .
precedes sea ice anomaly
and decreases afterward

1 1
SN

/Seasonal Sed ice
Annual (surface albedo)

[/

Atmosphere
Heats up

Energy Flux Anomaly (W m2)
o

Surface albedo anomaly (Times insolation -- W m-)

/
N
o
="
—_—

Lead/lag energy fluxes associated with ice retreat
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